时间序列分析
文章平均质量分 76
末世灯光
这个作者很懒,什么都没留下…
展开
-
StandardScaler函数用法
StandardScaler()` 是来自 `sklearn.preprocessing` 模块的一个类,其作用是进行特征缩放,使得所有特征的均值为 0,标准差为 1。如果你想要在计算均值和标准差的同时进行缩放,可以使用 `fit_transform` 函数,或者在调用 `fit` 函数后,再调用 `transform` 函数。- `fit` 函数用来计算数据的均值和标准差,为之后的缩放做准备。在调用 `fit` 函数后,`StandardScaler()` 对象会保存计算得到的均值和标准差。原创 2023-07-06 18:14:50 · 6165 阅读 · 0 评论 -
网络攻防技术--论文阅读--《基于自动数据分割和注意力LSTM-CNN的准周期时间序列异常检测》
准周期时间序列(QTS)在现实世界中广泛存在,检测QTS的异常是非常重要的。在本文提出了一种由基于二级聚类的QTS异常检测框架(AQADF)。分割算法(TCQSA)和混合注意LSTM-CNN模型(HALCM)。TCQSA首先自动拆分QTS进入准周期,然后通过HALCM将其分类为正常周期或异常。值得注意的是,TCQSA集成了集群技术和k-均值技术,使其具有高度通用性和抗噪性。HALCM将LSTM和CNN杂交到同时提取QTS的总体变化趋势和局部特征,以建立其波动模式。原创 2023-05-31 01:05:22 · 1147 阅读 · 0 评论 -
学习笔记-主成分分析法
PCA的数学思想:根据p个特征的线性组合,得到一个新的特征z,使得该特征的方差最大,该特征即为主成分。再次寻找p个特征的线性组合,得到新的特征,该特征与之前得到的主成分线性无关,且方差最大。其余要点:如果每个主成分的贡献率都相差不多,则不建议使用PCA。因为它一定程度上舍弃了部分信息,来提高整体的计算效率。对于降维形成的主成分,我们经常无法找到其在实际情况中所对应的特征,即主成分的解释其含义一般带有模糊性,不像原始变量的含义那么清楚确切,这也是PCA的缺陷所在。PCA不可用于评价类模型。原创 2023-04-26 23:13:00 · 756 阅读 · 0 评论 -
论文阅读---《人类活动识别的准周期时间序列聚类》
本文利用移动加速度计对时间序列中的周期信号进行分析,以识别人体活动。时间轴上的每个点对应历史时间序列的一段。这些片段在人类活动的相空间中形成相轨迹。相位轨迹段的主成分被视为时间轴上该点的特征描述。本文在新的特征空间中引入了新的点间距离函数。为了揭示人类活动类型的变化,本文提出了一种算法。该算法通过使用成对距离矩阵对时间轴上的点进行聚类。在合成数据和实际数据上对算法进行了验证。这个真实的数据是由一个移动加速度计获得的。原创 2023-04-20 17:15:51 · 764 阅读 · 1 评论 -
相空间相关概念以及轨迹生成
在相空间中,一个系统的状态由一组变量(通常称为状态变量)表示,这些变量共同定义了系统在某一时刻的完整状态。给定加速度时间序列 a(t),构建一个 n 维状态向量 A(t) = [a(t), a(t + τ), a(t + 2τ), ..., a(t + (n-1)τ)],其中 n 是嵌入维数,τ 是时间延迟。这个集合称为吸引子。通过研究相空间和相轨迹,我们可以更好地理解系统的内在动力学行为,从而有助于设计有效的控制策略和预测方法。例如,一个有两个状态变量(位置和速度)的力学系统的状态空间是二维的。原创 2023-04-20 16:33:14 · 1953 阅读 · 0 评论 -
机器学习---结课论文
机器学习与隐私保护结课论文摘 要:随着大数据时代的到来,时间序列数据在各个领域被广泛应用。然而,如何在利用这些数据的同时保护用户隐私成为了一个亟待解决的问题。本文回顾了时间序列数据的基本概念及其在机器学习中的应用,并总结了当前面临的隐私保护问题及已有的解决方案。接着,分析了这些解决方案的不足之处,并提出了新的隐私保护方法。最后,展望了未来研究方向。本文旨在为时间序列数据的隐私保护提供一个全面的概述,为未来相关研究奠定基础。关键词: 时间序列数据;机器学习;隐私保护;差分隐私;安全多方计算;原创 2023-04-18 09:24:43 · 5546 阅读 · 1 评论 -
道格拉斯普克算法
道格拉斯-普克算法(Douglas–Peucker algorithm),亦称为拉默-道格拉斯-普克算法(Ramer–Douglas–Peucker algorithm),这个算法最初由拉默(Urs Ramer)于1972年提出,1973年道格拉斯(David Douglas)和普克(Thomas Peucker)二人又独立于拉默提出了该算法。原创 2023-02-07 20:34:23 · 6219 阅读 · 1 评论 -
MIT_BIH数据库介绍
这两种格式的在文件中的区分决定于前两个字节的值,若文件的第一字节不为0或第二字节等于“[”(0x5B)或“]”(0x5D),则该文件是以MIT格式存储的,否则是按AHA格式存储的。MIT格式,每一注释单元的前两个字节的第一个字节为最低有效位,16位中的最高6位表示了注释类型代码(具体代码见后表),剩余的10位说明了该注释点的发生时间或辅助信息,若为发生时间,其值为该注释点到前一注释点的间隔(对于第一个注释点为从记录开始到该点的间隔),若为辅助信息则说明了附加信息的长度。%字节向右移四位,即取字节的高四位。原创 2023-02-07 18:09:41 · 2690 阅读 · 0 评论 -
目前常用的医疗心电图数据集
hea:头文件(可以理解为数据的注释文件),该文件含有记录编号、导联方式、采样频率、采样点数等信息;.atr:标记文件,该文件含有人工标注的心拍位置和类型(如:异常心拍类型的字母标记);.dat:心电信号数据(主体)。.xws文件没有用到,不作解释。该数据库是PhysioBank项目的一个子数据库,是第一套用于评估心律失常检测器的通用标准测试材料,并已用于此目的以及全球500多个地点的心脏动力学基础研究。原创 2023-02-07 17:39:42 · 6357 阅读 · 0 评论 -
高维多元时序数据聚类
收集数据的能力不断增强,使我们有可能收集大量的异构数据。在可用的异构数据中,时间序列代表着尚未被充分探索的信息母体。当前的数据挖掘技术在分析时间序列时存在多个缺点,尤其是在应同时分析多个时间序列(即多维时间序列)以从数据中提取知识时。原创 2022-11-30 18:05:48 · 4584 阅读 · 1 评论 -
高维多元时序数据之间的相似性度量
时间序列作为一种按时间顺序排列的特殊数据,是数据挖掘的重要研究内容,其中包括数据准备、数据选择、数据预处理、数据缩减、数据挖掘目标确定、挖掘算法确定、数据挖掘、模式解释及知识评价9个处理步骤W。数据挖掘方面的方法或算法,按挖掘任务的不同,可W分为W下几个大类:分类知识发现、数据聚类、关联规则发现、数据总结、序列模式发现、依赖关系或依赖模型发现、异常发现和趋势预测等。由于多变量时间序列多噪声、多变量、变量相关性及序列时间维度不等长等问题,増加了对其进行数据挖掘的难度。单变量。原创 2022-11-30 11:51:32 · 3043 阅读 · 0 评论 -
时序特征提取工具
在选择了需要提取的特征,确定了时序数据特征提取数据集的长度并对先验知识建模之后,就需要利用工具搭建特征提取系统。科研机构围绕不同问题域搭建的开源时序数据特征提取工具已经不少,我们可以利用这些工具快速实现希望达成的算法效果。下面介绍几种常用的时序特征提取工具(如python tsfresh,Time Series Feature Extraction Library (TSFEL),cesium、fats和hctsa),以供我们在做时序数据分析过程中技术选型参考。原创 2022-11-29 19:16:05 · 2637 阅读 · 0 评论 -
异常检测---离群点
异常数据离群点检测,算法实战。原创 2022-10-08 17:21:55 · 1280 阅读 · 0 评论 -
【TS技术课堂】时间序列预测
同样大小的值改变顺序后输入模型产生的结果是不同的。如之前的文章所介绍,时间序列可以分为平稳序列,即存在某种周期,季节性及趋势的方差和均值不随时间而变化的序列,和非平稳序列。如何对各种场景的时序数据做准确地预测,是一个非常值得研究的问题。时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。链接:https://pan.baidu.com/s/1nMwbRosnVOsyTE8Rd9G7eg。...原创 2022-08-08 11:09:28 · 255 阅读 · 0 评论 -
时间序列统计分析
时间序列时间序列统计分析原创 2022-07-28 21:08:35 · 185 阅读 · 0 评论