SVM技术详解(下)

1. 对偶问题

max1||w||s.t.,yi(wxi+b)1,i=1,...,n
min12||w||2s.t.,yi(wxi+b)1,i=1,...,n

现在的目标函数是二次的,约束条件是线性的,所以它是一个凸二次规划问题。这个问题可以用现成的QP (Quadratic Programming) 优化包进行求解。

二次规划的一般形式:

minxq(x)=12xGx+xc
s.t.aixbi

其中 G Hessian矩阵, τ 是有限指标集, c x ai ,都是R中的向量。如果Hessian矩阵是半正定的,则我们说 1.1 是一个凸二次规划,在这种情况下该问题的困难程度类似于线性规划(如果结果为0,二次规划问题就变成线性规划问题了)。如果有至少一个向量满足约束并且在可行域有下界,则凸二次规划问题就有一个全局最小值。如果是正定的,则这类二次规划为严格的凸二次规划,那么全局最小值就是唯一的。如果是一个不定矩阵,则为非凸二次规划,这类二次规划更有挑战性,因为它们有多个平稳点和局部极小值点。

通过给每一个约束条件加上一个拉格朗日乘子(Lagrange multiplier) α ,定义拉格朗日函数(通过拉格朗日函数将约束条件融合到目标函数里):

ζ(w,b,a)=12||w||2i=0nai(yi(wxi+b)1)
θ(w)=maxai0ζ(w,b,a)

容易验证,当某个约束条件不满足时,例如 yi(wxi+b)<1 ,那么显然有 θ(x)= (只要令 ai= 即可)。而当所有条件都满足时,则最优解为 θ(w)=12||w||2 ,亦即最初要最小化的量。
minw,b=minw,bmaxai0ζ(w,b,a)=p

这里用 p ,表示这个问题的最优值,且和最初的问题是等价的。如果直接求解,那么一上来便得面对 w b两个参数,而 αi 又是不等式约束,这个求解过程不好做。不妨把最小和最大的位置交换一下,变成:
maxai0minw,bζ(w,b,a)=d

交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用 d 来表示。而且有 dp ,在满足某些条件的情况下,这两者相等.

2. KTT条件

凸优化的概念 χRn 为一凸集, f:χR 为一凸函数。凸优化就是要找出一点 xχ 使得每一 xχ ,满足 f(x)f(x) .
KKT条件的意义:它是一个非线性规划(Nonlinear Programming)问题能有最优化解法的必要和充分条件。

原始问题通过满足KKT条件,已经转化成了对偶问题。而求解这个对偶学习问题,分为3个步骤:首先要让 ζ(wba) 关于 w b 最小化,然后求对的极大,最后利用SMO算法求解对偶问题中的拉格朗日乘子。

3. 线性不可分的推广——引进核函数Kernel

在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维特征空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开,如下图所示的两类数据,分别分布为两个圆圈的形状,这样的数据本身就是线性不可分的,此时该如何把这两类数据分开呢
kernel

如果我们做一个映射ϕ:R2R5,将 X 按照上面的规则映射为Z,那么在新的空间中原来的数据将变成线性可分的,从而使用之前我们推导的线性分类算法就可以进行处理了。
通过引进从输入空间 X 到另一个高维的 Hilbert 空间 H 的变换 将原输入空间 λ 的训练集:

T={(x1,y1),(x2,y2),...,(xl,yl)}(X×Y)l

转化为 Hilbert 空间 H 中的新的训练集:
T¯={(x¯1,y1),(x¯2,y2),...,(x¯l,yl)}={(θ(x1),y1),(θ(x2),y2),...,(θ(xl),yl)}

使其在 Hilbert 空间 H 中线性可分, Hilbert 空间 H 也称为特征空间。然后在空间 H中求得超平面 (ωϕ(x))+b=0 ,这个超平面可以硬性划分训练集 T <script type="math/tex" id="MathJax-Element-7511">T</script> ,于是原问题转化为如下的二次规划问题
convert

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值