汉诺塔算法:
1.有三根杆子A,B,C。A上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
public class Tower {
static int m = 0;// 借助m记录移动的次数
public static void move(int i, char a, char b) {
System.out.println("第" + (++m) + "次移动:" + "把第" + i + "号盘,从" + a + "----->" + b);
}
// 汉诺塔问题
/*
* 采用递归即可,根据问题描述,找出规律:
* 1、N个盘子需要移动 2^N-1 次;
* 2.1、中間一步是将最大的移动到C;
* 2.2、中间一步之上的,是将N-1个盘子,借助C柱,从A柱移动到B柱;
* 2.3、中间一步之下的,是将N-1个盘子,借助A柱,从B柱移动到C柱。
*/
public void hanio(int i, char a, char b, char c) {
if (i == 1) {
move(i, a, c);
} else {
hanio(i - 1, a, c, b);// 借助C柱,从A移动到B
move(i, a, b);
hanio(i - 1, b, a, c);// 借助A柱,从B移动到C
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
char a = 'a';
char b = 'b';
char c = 'c';
System.out.println("请输入盘子的个数:");
int s = scanner.nextInt();
Tower.t = new Tower();
t.hanio(s, a, b, c);
}
}
斐波那契额数列
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368……
特别指出:第0项是0,第1项是第一个1。
这个数列从第三项开始,每一项都等于前两项之和。
根据规律:f(n)=f(n-1)+f(n-2)
public class Fibo {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("请输入输入N值:");
int s = scanner.nextInt();
System.out.println("最终得出的值为:" + fibonacci(s));
}
public static long fibonacci(int n) {
if ((n == 0) || (n == 1)) {
return n;
} else {
return fibonacci(n - 2) + fibonacci(n - 1);
}
}
}