【堆和堆排序】:为什么说堆排序没有快速排序快?

我们今天讲另外一种特殊的树,“堆”(Heap)。堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地的、时间复杂度为 O(nlog n)的排序算法。

前面我们学过快速排序,平均情况下,它的时间复杂度为 O(nlog n)。尽管这两种排序算法的时间复杂度都是 O(nlog n),甚至堆排序比快速排序的时间复杂度还要稳定,但是,在实际的软件开发中,快速排序的性能要比堆排序好,这是为什么呢?


如何理解“堆”?

前面我们提到,堆是一种特殊的树。我们现在就来看看,什么样的树才是堆。我罗列了两点要求,只要满足这两点,它就是一个堆

  • 堆是一个完全二叉树;
  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

我分别解释一下这两点。

第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。

定义解释清楚了,你来看看,下面这几个二叉树是不是堆?

其中第 1 个和第 2个是大顶堆,第 3 个是小顶堆,第 4 个不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。


如何实现一个堆?

要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆

我之前讲过,完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

从图中我们可以看到,数组中下标为 i 的节点的左子节点,就是下标为 i*2 的节点,右子节点就是下标为 i*2+1 的节点,父节点就是下标为 i/2的节点。

知道了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,我下面都是拿大顶堆来讲解)。

1. 往堆中插入一个元素

往堆中插入一个元素后,我们需要继续满足堆的两个特性。

如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化(heapify)

堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。

堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

我这里画了一张堆化的过程分解图。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。

我将上面讲的往堆中插入数据的过程,翻译成了代码,你可以结合着一块看。

//以大顶堆为例
class Heap{
public:
    Heap(int capacity){
        a = new int[capacity+1];
        n = capacity;
        count = 0;
    }

    ~Heap(){
        delete[] a;
    }

    //插入一个数据
    void insert(int data){
        if(count >= n) return; //堆已满,直接返回
        ++count;
        a[count] = data;
        
        int i= count;
        //自下而上堆化
        while(i/2>0 && a[i]>a[i/2]){
            swap(a[i],a[i/2]);//C++98: <algorithm>, C++11: <utility>
            i/=2;
        }
    }

private:
    int *a;//数组,从下标1开始存储数据
    int n;//堆可以存储得最大数据个数
    int count;//堆中已经存储得数据个数

};

2. 删除堆顶元素

从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值

假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

这里我也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性

实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法

因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。

我把上面的删除过程同样也翻译成了代码,贴在这里,你可以结合着看

//删除堆顶元素
void removeMax(){
    if(count==0) return; // 堆中没有数据了,直接返回
    a[1] = a[count];
    --count;
    heapify(a,count,1);
}

//自上而下堆化
void heapify(int *a, int n, int i){
    while(true){
        int maxPos = i;
        if(i*2 <= n && a[i*2]>a[i]) maxPos = i*2;
        if(i*2+1<=n && a[i*2+1]>a[maxPos]) maxPos = i*2+1;
        if(maxPos==i) break; //堆化完成,退出循环

        swap(a[i],a[maxPos]);
        i = maxPos;
    }
}

我们知道,一个包含 n个节点的完全二叉树,树的高度不会超过 log2 n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(log n)


如何基于堆实现排序?

前面我们讲过好几种排序算法,我们再来回忆一下,有时间复杂度是 O(n^2)的冒泡排序、插入排序、选择排序,有时间复杂度是 O(nlog n) 的归并排序、快速排序,还有线性排序。

这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是 O(nlog n),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

我们可以把堆排序的过程大致分解成两个大的步骤,建堆和排序。

1. 建堆

我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作建堆的过程,有两种思路

第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面讲的插入操作,将下标从 2 到 n 的数据依次插入到堆中。这样我们就将包含 n 个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从第一个非叶子节点开始,依次堆化就行了。

对于程序员来说,看代码可能更好理解一些,所以,我将第二种实现思路翻译成了代码,你可以看下。

//建堆
void bulidHeap(int *a, int n){
    //从第一个非叶节点开始从后往前,依次从上向下堆化
    for(int i=n/2; i>=1; --i){
        uptodown_heaplify(a, n, i);
    }
}

void uptodown_heaplify(int *a, int n, int i){
    while(true){
        int maxPos = i;
        if(i*2<=n && a[i] < a[i*2]) maxPos = i*2;
        if(i*2+1<=n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
        if(maxPos==i) break;

        swap(a[i],a[maxPos]);
        i = maxPos;
    }
}

你可能已经发现了,在这段代码中,我们对下标从 n/2 开始到 1 的数据进行堆化,下标是 n/2+1 到 n 的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从 n/2+1 到 n 的节点都是叶子节点。

现在,我们来看,建堆操作的时间复杂度是多少呢?

每个节点堆化的时间复杂度是 O(log n),那 n/2 个节点堆化的总时间复杂度是不是就是 O(nlog n) 呢?这个答案虽然也没错,但是这个值还是不够精确。实际上,堆排序的建堆过程的时间复杂度是 O(n)。我带你推导一下。

因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 k 成正比。

我把每一层的节点个数和对应的高度画了出来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。

我们将每个非叶子节点的高度求和,就是下面这个公式:

这个公式的求解稍微有点技巧,不过我们高中应该都学过:把公式左右都乘以 2,就得到另一个公式 S2。我们将 S2 错位对齐,并且用 S2 减去 S1,可以得到 S。

S 的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下面图中画的这个样子。

因为 h=log2 n,代入公式 S,就能得到 S=O(n),所以,建堆的时间复杂度就是O(n)。

 

2. 排序

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。

这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 n的元素放到堆顶,然后再通过堆化的方法,将剩下的 n-1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n-1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。

堆排序的过程,我也翻译成了代码。结合着代码看,你理解起来应该会更加容易。

// n 表示数据的个数,数组 a 中的数据从下标 1 到 n 的位置。
void heapsort(int *a, int n){
    //先建堆
    bulidHeap(a,n);

    int k = n;
    while(k > 1){
        //将堆顶与a[k]交换
        swap(a[1],a[k]);

        //除了刚换到最后的元素,并进行调整
        --k;
        uptodown_heaplify(a,k,1);
    }
}

现在,我们再来分析一下堆排序的时间复杂度、空间复杂度以及稳定性。

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlog n)

堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

今天的内容到此就讲完了。我这里要稍微解释一下,在前面的讲解以及代码中,我都假设,堆中的数据是从数组下标为 1 的位置开始存储。那如果从 0 开始存储,实际上处理思路是没有任何变化的,唯一变化的,可能就是,代码实现的时候,计算子节点和父节点的下标的公式改变了。如果节点的下标是 i,那左子节点的下标就是 2*i+1,右子节点的下标就是 2*i+2,父节点的下标就是 (i-1)/2。


解答开篇

现在我们来看开篇的问题,在实际开发中,为什么快速排序要比堆排序性能好

我觉得主要有两方面的原因。

第一点,堆排序数据访问的方式没有快速排序友好

对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。 比如,堆排序中,最重要的一个操作就是数据的堆化。比如下面这个例子,对堆顶节点进行堆化,会依次访问数组下标是 1,2,4,8 的元素,而不是像快速排序那样,局部顺序访问,所以,这样对CPU 缓存是不友好的

第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序

我们在讲排序的时候,提过两个概念,有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快速排序数据交换的次数不会比逆序度多。

但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得更无序了。

对于第二点,你可以自己做个试验看下。我们用一个记录交换次数的变量,在代码中,每次交换的时候,我们就对这个变量加一,排序完成之后,这个变量的值就是总的数据交换次数。这样你就能很直观地理解我刚刚说的,堆排序比快速排序交换次数多。


内容小结

今天我们讲了堆这种数据结构。堆是一种完全二叉树。它最大的特性是:每个节点的值都大于等于(或小于等于)其子树节点的值。因此,堆被分成了两类,大顶堆和小顶堆。

堆中比较重要的两个操作是插入一个数据和删除堆顶元素。这两个操作都要用到堆化。插入一个数据的时候,我们把新插入的数据放到数组的最后,然后从下往上堆化删除堆顶数据的时候,我们把数组中的最后一个元素放到堆顶,然后从上往下堆化。这两个操作时间复杂度都是O(log n)

除此之外,我们还讲了堆的一个经典应用,堆排序。堆排序包含两个过程,建堆和排序。我们将下标从 n/2 到 1 的节点,依次进行从上到下的堆化操作,然后就可以将数组中的数据组织成堆这种数据结构。接下来,我们迭代地将堆顶的元素放到堆的末尾,并将堆的大小减一,然后再堆化,重复这个过程,直到堆中只剩下一个元素,整个数组中的数据就都有序排列了。
 


课后思考

1. 在讲堆排序建堆的时候,我说到,对于完全二叉树来说,下标从 n/2+1 到 n  的都是叶子节点,这个结论是怎么推导出来的呢

使用数组存储表示完全二叉树时,从数组下标为1开始存储数据,数组下标为i的节点,左子节点为2i, 右子节点为2i + 1. 这个结论很重要(可以用数学归纳法证明),将此结论记为『原理1』,以下证明会用到这个原理。

为什么,对于完全二叉树来说,下标从n/2 + 1 到 n的节点都是叶子节点? 使用反证法证明即可:

如果下标为n/2 + 1的节点不是叶子节点,即它存在子节点,按照『原理1』,它的左子节点为:2(n/2 + 1) = n + 2,大家明显可以看出,这个数字已经大于n + 1,超出了实现完全二叉树所用数组的大小(数组下标从1开始记录数据,对于n个节点来说,数组大小是n + 1),左子节点都已经超出了数组容量,更何况右子节点。以此类推,很容易得出:下标大于n/2 + 1的节点肯定都是也叶子节点了,故而得出结论:对于完全二叉树来说,下标从n/2 + 1 到 n的节点都是叶子节点

备注下:用数组存储表示完全二叉树时,也可以从下标为0开始,只是这样做的话,计算左子节点时,会多一次加法运算

 

2. 我们今天讲了堆的一种经典应用,堆排序。关于堆,你还能想到它的其他应用吗
 

堆的应用除了堆排以外,还有如下一些应用:
1. 从大数量级数据中筛选出top n 条数据; 比如:从几十亿条订单日志中筛选出金额靠前的1000条数据
2. 在一些场景中,会根据不同优先级来处理网络请求,此时也可以用到优先队列(用堆实现的数据结构);比如:网络框架Volley就用了Java中PriorityBlockingQueue,当然它是线程安全的
3. 可以用堆来实现多路归并,从而实现有序,leetcode上也有相关的一题:Merge K Sorted Lists

 

template <class T, class Container = vector<T>,
  class Compare = less<typename Container::value_type> > class priority_queue;

优先级队列和堆类似。

优先级队列和堆之间的区别
概念:

1.堆是一种数据结构。它是一种存储数据的特殊方法的名称,这种方法使某些操作非常有效。我们可以用树或数组来描述它。

2.优先队列是一种抽象的数据类型。它是描述特定接口和行为的一种简写方式,对底层实现只字未提。

堆是实现优先级队列的一种非常好的数据结构。堆数据结构使操作变得有效的操作是优先队列接口需要的操作。

LeetCode 23. Merge k Sorted Lists 合并k个已排序的链表为一个排序链表


应用:
1.topK
2.流里面的中值
3.流里面的中位数

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值