置换矩阵(P)的逆是其转置(T)

置换矩阵(Permutation matrix):矩阵的每一行和每一列的元素中只有一个1,其余元素都为0。(不严谨的解释)

转置矩阵(Transpose matrix):矩阵的行变成对应的列,矩阵的列变成对应的行。(不严谨的直白解释)

性质:置换矩阵(P)的逆是其(置换矩阵自己的)转置(T)

即:P^(-1)= P^T

如:3×3的置换矩阵群(共3! = 6个,补充4×4的置换矩阵共4! = 4×3×2×1 = 24个

1 0 0 | 0 1 0

0 1 0 | 1 0 0

0 0 1 | 0 0 1

----------------

0 0 1 | 1 0 0  

0 1 0 | 0 0 1 

1 0 0 | 0 1 0 

置换矩阵的逆=置换矩阵的转置(上面4个置换矩阵的转置矩阵都是自身,又因为他们的逆=他们的转置,所以他们的逆=自身)


0 1 0 | 0 0 1 

0 0 1 | 1 0 0 

1 0 0 | 0 1 0 

置换矩阵的逆=置换矩阵的转置(这两个矩阵的转置=对方,因此这两个矩阵的逆=对方)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值