线性代数 --- 置换矩阵 (Permutation matrix)

置换矩阵在高斯消元中扮演重要角色,当遇到主元为0时,通过行交换确保消元顺利进行。置换矩阵是单位矩阵经过重新排列后的形式,其特点是每行每列只有一个1,转置仍为置换矩阵。置换矩阵的乘积和逆矩阵特性在矩阵运算中具有重要意义,特别是在非奇异矩阵的LU分解中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

置换矩阵就是重新排列后的单位矩阵

        对一个矩阵进行行交换,需要通过置换矩阵(permutation matrix)来完成。

        在对一个Ax=b的方程组进行高斯消元的过程中,我们常常会遇到一种情况,也就是消元消不下去的情况。下面,我列出了两个不同的3x3矩阵的消元过程:

        上图中的第一行,是一个比较常见的消元流程。对于3x3方阵而言,先令主对角线上的第一个元素A11(在图中左上角用方框框出)主元(pivot),且当前列被称为主元列。用A11所在的行去乘以一个合适的系数减去下面各行(第二,第三行),使得A11这一列下面的元素都为0。之后,再令A22为主元,A22所在的列为主元列,用A22所在的行乘以一个相应的系数减去下面各行(第三行),使得A22所在列下面的元

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值