申明: 仅仅个人小记
举例探讨: y=f(x)连续,绕x轴旋转,求旋转体的表面积
用微元法求解旋转体表面积,
微元法的使用前提条件:实际量和近似量之间误差必须为高阶无穷小
显然,实际量是不好直接描述的(不然也就不会来采用定积分的方法了),但是我们能够表述出实际量的估计范围。
正确的方案
实际量
Δ
S
r
∈
[
2
π
f
m
i
n
Δ
s
,
2
π
f
m
a
x
Δ
s
]
\Delta S_r \in [2\pi f_{min}\Delta s,2\pi f_{max}\Delta s]
ΔSr∈[2πfminΔs,2πfmaxΔs]
近似量为
2
π
f
(
x
)
Δ
s
2\pi f(x) \Delta s
2πf(x)Δs
要求实际量和近似量之差为高阶无穷小,这里的自变量为x。
计算误差:
Δ
E
=
Δ
S
r
−
2
π
f
(
x
)
Δ
s
∈
[
2
π
(
f
m
i
n
−
f
(
x
)
)
Δ
s
,
2
π
(
f
m
a
x
−
f
(
x
)
)
Δ
s
]
=
2
π
Δ
s
[
f
m
i
n
−
f
(
x
)
,
f
m
a
x
−
f
(
x
)
]
\Delta E = \Delta S_r - 2\pi f(x) \Delta s\in [2\pi(f_{min}-f(x))\Delta s, 2\pi(f_{max}-f(x))\Delta s]=2\pi\Delta s[f_{min}-f(x),f_{max}-f(x)]
ΔE=ΔSr−2πf(x)Δs∈[2π(fmin−f(x))Δs,2π(fmax−f(x))Δs]=2πΔs[fmin−f(x),fmax−f(x)]
因为函数
y
=
f
(
x
)
y=f(x)
y=f(x)连续,所以当
Δ
x
→
0
\Delta x \to 0
Δx→0,必然有
f
m
a
x
−
f
(
x
)
,
f
m
i
n
−
f
(
x
)
→
0
f_{max}-f(x) , f_{min}-f(x) \to 0
fmax−f(x),fmin−f(x)→0又因为
Δ
s
=
1
+
f
′
(
x
)
2
Δ
x
\Delta s= \sqrt{1+{f'(x)}^{2}}\Delta x
Δs=1+f′(x)2Δx,所以
lim
Δ
x
→
0
Δ
E
Δ
x
=
2
π
Δ
s
[
f
m
i
n
−
f
(
x
)
,
f
m
a
x
−
f
(
x
)
]
Δ
x
=
2
π
1
+
f
′
(
x
)
2
[
f
m
i
n
−
f
(
x
)
,
f
m
a
x
−
f
(
x
)
]
=
2
π
1
+
f
′
(
x
)
2
∗
0
=
0
\lim_{\Delta x \to 0} \frac {\Delta E}{\Delta x}=\frac {2\pi\Delta s[f_{min}-f(x),f_{max}-f(x)]}{\Delta x}=2\pi \sqrt{1+{f'(x)}^{2}}[f_{min}-f(x),f_{max}-f(x)]=2\pi \sqrt{1+{f'(x)}^{2}}*0=0
Δx→0limΔxΔE=Δx2πΔs[fmin−f(x),fmax−f(x)]=2π1+f′(x)2[fmin−f(x),fmax−f(x)]=2π1+f′(x)2∗0=0
所以当
Δ
x
→
0
\Delta x \to 0
Δx→0时,误差
Δ
E
\Delta E
ΔE 恒为
o
(
Δ
x
)
o(\Delta x)
o(Δx),满足微元法的使用条件。
所以,
y
=
f
(
x
)
y=f(x)
y=f(x)绕 x 轴旋转的旋转体的表面积为
S
=
∫
a
b
2
π
f
(
x
)
1
+
f
′
(
x
)
2
d
x
S=\int_{a}^{b}2\pi f(x)\sqrt{1+{f'(x)}^{2}}dx
S=∫ab2πf(x)1+f′(x)2dx
易错的方案(解释为什么错)
容易认为旋转体的表面积公式是
S
=
∫
a
b
2
π
f
(
x
)
d
x
S=\int_{a}^{b}2\pi f(x)dx
S=∫ab2πf(x)dx
错误根因就是错误得使用了微元法,在没有满足微元法使用条件的情况下使用了微元法。
这个公式认为近似量为
2
π
f
(
x
)
Δ
x
2\pi f(x)\Delta x
2πf(x)Δx,而不是
2
π
f
(
x
)
Δ
s
2\pi f(x) \Delta s
2πf(x)Δs。我们来计算一下,看看
2
π
f
(
x
)
Δ
x
2\pi f(x)\Delta x
2πf(x)Δx是否满足“保证实际量和近似量误差为高阶无穷小”。
Δ
E
=
Δ
S
r
−
2
π
f
(
x
)
Δ
x
∈
[
2
π
(
f
m
i
n
Δ
s
−
f
(
x
)
Δ
x
)
,
2
π
(
f
m
a
x
Δ
s
−
f
(
x
)
Δ
x
)
]
=
2
π
[
f
m
i
n
Δ
s
−
f
(
x
)
Δ
x
,
f
m
a
x
Δ
s
−
f
(
x
)
Δ
x
]
=
2
π
[
f
m
i
n
1
+
f
′
(
x
)
2
Δ
x
−
f
(
x
)
Δ
x
,
f
m
a
x
1
+
f
′
(
x
)
2
Δ
−
f
(
x
)
Δ
x
]
=
2
π
Δ
x
[
1
+
f
′
(
x
)
2
f
m
i
n
−
f
(
x
)
,
1
+
f
′
(
x
)
2
f
m
a
x
−
f
(
x
)
)
]
\Delta E = \Delta S_r - 2\pi f(x) \Delta x\\\in [2\pi(f_{min}\Delta s-f(x)\Delta x), 2\pi(f_{max}\Delta s-f(x)\Delta x)]\\=2\pi[f_{min}\Delta s-f(x)\Delta x,f_{max}\Delta s - f(x)\Delta x]\\=2\pi[f_{min}\sqrt{1+{f'(x)}^{2}}\Delta x-f(x)\Delta x, f_{max}\sqrt{1+{f'(x)}^{2}}\Delta -f(x)\Delta x]\\=2\pi\Delta x[\sqrt{1+{f'(x)}^{2}}f_{min}-f(x),\sqrt{1+{f'(x)}^{2}}f_{max}-f(x))]
ΔE=ΔSr−2πf(x)Δx∈[2π(fminΔs−f(x)Δx),2π(fmaxΔs−f(x)Δx)]=2π[fminΔs−f(x)Δx,fmaxΔs−f(x)Δx]=2π[fmin1+f′(x)2Δx−f(x)Δx,fmax1+f′(x)2Δ−f(x)Δx]=2πΔx[1+f′(x)2fmin−f(x),1+f′(x)2fmax−f(x))]
因为
y
=
f
(
x
)
y=f(x)
y=f(x)连续,所以当
Δ
x
→
0
\Delta x \to 0
Δx→0,
f
m
i
n
−
f
(
x
)
,
f
m
a
x
−
f
(
x
)
→
0
f_{min}-f(x),f_{max}-f(x) \to 0
fmin−f(x),fmax−f(x)→0又因为
1
+
f
′
(
x
)
2
≥
1
\sqrt {1+{f'(x)}^{2}} \ge 1
1+f′(x)2≥1,当且仅当
f
′
(
x
)
2
=
0
{f'(x)}^{2}=0
f′(x)2=0(即该点导数为0,即水平状态)时,取值为1。所以
1
+
f
′
(
x
)
2
f
m
i
n
−
f
(
x
)
=
(
1
+
f
′
(
x
)
2
−
1
)
f
m
i
n
+
(
f
m
i
n
−
f
(
x
)
)
\sqrt{1+{f'(x)}^{2}}f_{min}-f(x)\\=(\sqrt{1+{f'(x)}^{2}}-1)f_{min}+(f_{min}-f(x))
1+f′(x)2fmin−f(x)=(1+f′(x)2−1)fmin+(fmin−f(x))
当
Δ
x
→
0
\Delta x \to 0
Δx→0时,
1
+
f
′
(
x
)
2
f
m
i
n
−
f
(
x
)
→
(
1
+
f
′
(
x
)
2
−
1
)
f
m
i
n
≥
0
\sqrt{1+{f'(x)}^{2}}f_{min}-f(x) \to (\sqrt{1+{f'(x)}^{2}}-1)f_{min}\ge 0
1+f′(x)2fmin−f(x)→(1+f′(x)2−1)fmin≥0
对
f
m
a
x
f_{max}
fmax同理。所以
lim
Δ
x
→
0
Δ
E
Δ
x
∈
2
π
[
(
1
+
f
′
(
x
)
2
−
1
)
f
m
i
n
,
(
1
+
f
′
(
x
)
2
−
1
)
f
m
a
x
]
\lim_{\Delta x\to 0}\frac {\Delta E}{\Delta x} \in \\2\pi[(\sqrt{1+{f'(x)}^{2}}-1)f_{min},(\sqrt{1+{f'(x)}^{2}}-1)f_{max}]
Δx→0limΔxΔE∈2π[(1+f′(x)2−1)fmin,(1+f′(x)2−1)fmax]只有当
f
′
(
x
)
2
=
0
{f'(x)}^{2}=0
f′(x)2=0时,
lim
Δ
x
→
0
Δ
E
Δ
x
=
0
\lim_{\Delta x\to 0}\frac {\Delta E}{\Delta x}=0
Δx→0limΔxΔE=0
即,不能保证当
Δ
x
→
0
\Delta x\to 0
Δx→0时,
Δ
E
\Delta E
ΔE是
o
(
Δ
x
)
o(\Delta x)
o(Δx)。所以不满足微元法的使用条件。所以相应的表面积公式是不合理的。
补充理解 1 + f ′ ( x ) 2 \sqrt{1+{f'(x)}^{2}} 1+f′(x)2
f
′
(
x
)
=
t
a
n
θ
f'(x)=tan\theta
f′(x)=tanθ
1
+
f
′
(
x
)
2
=
1
+
t
a
n
2
θ
=
c
o
s
2
θ
+
s
i
n
2
θ
c
o
s
2
θ
=
1
c
o
s
θ
\sqrt{1+{f'(x)}^{2}}=\sqrt{1+{tan}^{2}\theta}=\sqrt{\frac{{cos}^{2}\theta + {sin}^{2}\theta}{{cos}^{2}\theta}}=\frac {1}{cos\theta}
1+f′(x)2=1+tan2θ=cos2θcos2θ+sin2θ=cosθ1
导数三角形中, d s = d x c o s θ = 1 + f ′ ( x ) 2 d x ds = \frac {dx}{cos\theta}=\sqrt{1+{f'(x)}^{2}}dx ds=cosθdx=1+f′(x)2dx
