旋转体表面积公式推导及证明错误

申明: 仅仅个人小记

举例探讨: y=f(x)连续,绕x轴旋转,求旋转体的表面积
微元法求解旋转体表面积,
微元法的使用前提条件:实际量和近似量之间误差必须为高阶无穷小

显然,实际量不好直接描述的(不然也就不会来采用定积分的方法了),但是我们能够表述出实际量的估计范围

正确的方案

实际量 Δ S r ∈ [ 2 π f m i n Δ s , 2 π f m a x Δ s ] \Delta S_r \in [2\pi f_{min}\Delta s,2\pi f_{max}\Delta s] ΔSr[2πfminΔs,2πfmaxΔs]
近似量为 2 π f ( x ) Δ s 2\pi f(x) \Delta s 2πf(x)Δs
要求实际量和近似量之差高阶无穷小,这里的自变量为x。

计算误差: Δ E = Δ S r − 2 π f ( x ) Δ s ∈ [ 2 π ( f m i n − f ( x ) ) Δ s , 2 π ( f m a x − f ( x ) ) Δ s ] = 2 π Δ s [ f m i n − f ( x ) , f m a x − f ( x ) ] \Delta E = \Delta S_r - 2\pi f(x) \Delta s\in [2\pi(f_{min}-f(x))\Delta s, 2\pi(f_{max}-f(x))\Delta s]=2\pi\Delta s[f_{min}-f(x),f_{max}-f(x)] ΔE=ΔSr2πf(x)Δs[2π(fminf(x))Δs,2π(fmaxf(x))Δs]=2πΔs[fminf(x),fmaxf(x)]
因为函数 y = f ( x ) y=f(x) y=f(x)连续,所以当 Δ x → 0 \Delta x \to 0 Δx0,必然有 f m a x − f ( x ) , f m i n − f ( x ) → 0 f_{max}-f(x) , f_{min}-f(x) \to 0 fmaxf(x),fminf(x)0又因为 Δ s = 1 + f ′ ( x ) 2 Δ x \Delta s= \sqrt{1+{f'(x)}^{2}}\Delta x Δs=1+f(x)2 Δx,所以 lim ⁡ Δ x → 0 Δ E Δ x = 2 π Δ s [ f m i n − f ( x ) , f m a x − f ( x ) ] Δ x = 2 π 1 + f ′ ( x ) 2 [ f m i n − f ( x ) , f m a x − f ( x ) ] = 2 π 1 + f ′ ( x ) 2 ∗ 0 = 0 \lim_{\Delta x \to 0} \frac {\Delta E}{\Delta x}=\frac {2\pi\Delta s[f_{min}-f(x),f_{max}-f(x)]}{\Delta x}=2\pi \sqrt{1+{f'(x)}^{2}}[f_{min}-f(x),f_{max}-f(x)]=2\pi \sqrt{1+{f'(x)}^{2}}*0=0 Δx0limΔxΔE=Δx2πΔs[fminf(x),fmaxf(x)]=2π1+f(x)2 [fminf(x),fmaxf(x)]=2π1+f(x)2 0=0
所以当 Δ x → 0 \Delta x \to 0 Δx0时,误差 Δ E \Delta E ΔE 恒为 o ( Δ x ) o(\Delta x) o(Δx)满足微元法的使用条件
所以, y = f ( x ) y=f(x) y=f(x)绕 x 轴旋转的旋转体的表面积 S = ∫ a b 2 π f ( x ) 1 + f ′ ( x ) 2 d x S=\int_{a}^{b}2\pi f(x)\sqrt{1+{f'(x)}^{2}}dx S=ab2πf(x)1+f(x)2 dx

易错的方案(解释为什么错)

容易认为旋转体的表面积公式是 S = ∫ a b 2 π f ( x ) d x S=\int_{a}^{b}2\pi f(x)dx S=ab2πf(x)dx
错误根因就是错误得使用了微元法,在没有满足微元法使用条件的情况下使用了微元法。
这个公式认为近似量为 2 π f ( x ) Δ x 2\pi f(x)\Delta x 2πf(x)Δx,而不是 2 π f ( x ) Δ s 2\pi f(x) \Delta s 2πf(x)Δs。我们来计算一下,看看 2 π f ( x ) Δ x 2\pi f(x)\Delta x 2πf(x)Δx是否满足“保证实际量和近似量误差为高阶无穷小”。
Δ E = Δ S r − 2 π f ( x ) Δ x ∈ [ 2 π ( f m i n Δ s − f ( x ) Δ x ) , 2 π ( f m a x Δ s − f ( x ) Δ x ) ] = 2 π [ f m i n Δ s − f ( x ) Δ x , f m a x Δ s − f ( x ) Δ x ] = 2 π [ f m i n 1 + f ′ ( x ) 2 Δ x − f ( x ) Δ x , f m a x 1 + f ′ ( x ) 2 Δ − f ( x ) Δ x ] = 2 π Δ x [ 1 + f ′ ( x ) 2 f m i n − f ( x ) , 1 + f ′ ( x ) 2 f m a x − f ( x ) ) ] \Delta E = \Delta S_r - 2\pi f(x) \Delta x\\\in [2\pi(f_{min}\Delta s-f(x)\Delta x), 2\pi(f_{max}\Delta s-f(x)\Delta x)]\\=2\pi[f_{min}\Delta s-f(x)\Delta x,f_{max}\Delta s - f(x)\Delta x]\\=2\pi[f_{min}\sqrt{1+{f'(x)}^{2}}\Delta x-f(x)\Delta x, f_{max}\sqrt{1+{f'(x)}^{2}}\Delta -f(x)\Delta x]\\=2\pi\Delta x[\sqrt{1+{f'(x)}^{2}}f_{min}-f(x),\sqrt{1+{f'(x)}^{2}}f_{max}-f(x))] ΔE=ΔSr2πf(x)Δx[2π(fminΔsf(x)Δx),2π(fmaxΔsf(x)Δx)]=2π[fminΔsf(x)Δx,fmaxΔsf(x)Δx]=2π[fmin1+f(x)2 Δxf(x)Δx,fmax1+f(x)2 Δf(x)Δx]=2πΔx[1+f(x)2 fminf(x),1+f(x)2 fmaxf(x))]
因为 y = f ( x ) y=f(x) y=f(x)连续,所以当 Δ x → 0 \Delta x \to 0 Δx0, f m i n − f ( x ) , f m a x − f ( x ) → 0 f_{min}-f(x),f_{max}-f(x) \to 0 fminf(x),fmaxf(x)0又因为 1 + f ′ ( x ) 2 ≥ 1 \sqrt {1+{f'(x)}^{2}} \ge 1 1+f(x)2 1,当且仅当 f ′ ( x ) 2 = 0 {f'(x)}^{2}=0 f(x)2=0(即该点导数为0,即水平状态)时,取值为1。所以 1 + f ′ ( x ) 2 f m i n − f ( x ) = ( 1 + f ′ ( x ) 2 − 1 ) f m i n + ( f m i n − f ( x ) ) \sqrt{1+{f'(x)}^{2}}f_{min}-f(x)\\=(\sqrt{1+{f'(x)}^{2}}-1)f_{min}+(f_{min}-f(x)) 1+f(x)2 fminf(x)=(1+f(x)2 1)fmin+(fminf(x))
Δ x → 0 \Delta x \to 0 Δx0时, 1 + f ′ ( x ) 2 f m i n − f ( x ) → ( 1 + f ′ ( x ) 2 − 1 ) f m i n ≥ 0 \sqrt{1+{f'(x)}^{2}}f_{min}-f(x) \to (\sqrt{1+{f'(x)}^{2}}-1)f_{min}\ge 0 1+f(x)2 fminf(x)(1+f(x)2 1)fmin0
f m a x f_{max} fmax同理。所以
lim ⁡ Δ x → 0 Δ E Δ x ∈ 2 π [ ( 1 + f ′ ( x ) 2 − 1 ) f m i n , ( 1 + f ′ ( x ) 2 − 1 ) f m a x ] \lim_{\Delta x\to 0}\frac {\Delta E}{\Delta x} \in \\2\pi[(\sqrt{1+{f'(x)}^{2}}-1)f_{min},(\sqrt{1+{f'(x)}^{2}}-1)f_{max}] Δx0limΔxΔE2π[(1+f(x)2 1)fmin(1+f(x)2 1)fmax]只有当 f ′ ( x ) 2 = 0 {f'(x)}^{2}=0 f(x)2=0时, lim ⁡ Δ x → 0 Δ E Δ x = 0 \lim_{\Delta x\to 0}\frac {\Delta E}{\Delta x}=0 Δx0limΔxΔE=0
即,不能保证当 Δ x → 0 \Delta x\to 0 Δx0时, Δ E \Delta E ΔE o ( Δ x ) o(\Delta x) o(Δx)。所以不满足微元法的使用条件。所以相应的表面积公式是不合理的。

补充理解 1 + f ′ ( x ) 2 \sqrt{1+{f'(x)}^{2}} 1+f(x)2

f ′ ( x ) = t a n θ f'(x)=tan\theta f(x)=tanθ
1 + f ′ ( x ) 2 = 1 + t a n 2 θ = c o s 2 θ + s i n 2 θ c o s 2 θ = 1 c o s θ \sqrt{1+{f'(x)}^{2}}=\sqrt{1+{tan}^{2}\theta}=\sqrt{\frac{{cos}^{2}\theta + {sin}^{2}\theta}{{cos}^{2}\theta}}=\frac {1}{cos\theta} 1+f(x)2 =1+tan2θ =cos2θcos2θ+sin2θ =cosθ1

导数三角形中, d s = d x c o s θ = 1 + f ′ ( x ) 2 d x ds = \frac {dx}{cos\theta}=\sqrt{1+{f'(x)}^{2}}dx ds=cosθdx=1+f(x)2 dx

谢谢支持!
邮箱: officeforcsdn@163.com
在MATLAB中,可以使用以下步骤来求解旋转体表面积: 1. 首先,定义旋转体的形状。可以使用符号变量来表示旋转体的半径函数和高度函数。例如,假设旋转体的半径函数为r(theta),高度函数为h(theta),其中theta是旋转角度。 2. 接下来,选择一个合适的角度范围来表示旋转体的完整形状。通常选择0到2*pi作为角度范围。 3. 使用符号变量和角度范围来定义旋转体表面积函数。可以使用公式2*pi*r(theta)*h(theta)来计算每个角度处的表面积。 4. 使用积分函数进行数值计算。在MATLAB中,可以使用'int'函数来进行数值积分。将表面积函数作为'int'函数的参数,并指定角度范围作为积分变量。 5. 最后,使用数值积分结果得到旋转体表面积。 下面是一个示例代码,演示了如何在MATLAB中求解旋转体表面积: ```matlab syms theta; r = @(theta) 2 + sin(3*theta); % 旋转体的半径函数 h = @(theta) 4 + cos(2*theta); % 旋转体的高度函数 angle_range = [0, 2*pi]; % 角度范围 surface_area_func = 2*pi*r(theta)*h(theta); % 表面积函数 surface_area = int(surface_area_func, theta, angle_range(1), angle_range(2)); % 数值积分 surface_area = double(surface_area); % 转换为数值结果 disp(['旋转体表面积为:', num2str(surface_area)]); ``` 请注意,上述示例代码中的半径函数和高度函数仅作为示例,您需要根据实际情况修改这些函数。另外,还可以根据需要使用更复杂的数学表达式来定义旋转体的形状。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值