【高数笔记】

这篇博客探讨了数学在信息技术领域的关键应用,包括重要极限公式、间断点的判断、泰勒中值定理、积分计算、曲线旋转体积与表面积的求解、曲率和切线方程。还涉及了一阶和二阶线性微分方程以及线性代数中的向量表示问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两个重要极限

第一个重要极限公式是:lim((sinx)/x)=1(x->0)

第二个重要极限公式是:lim(1+(1/x))^x=e(x→∞)

x->0常见极限x~ sinx ~ ln(1+x) ~ e^x - 1  ~ tanx1-cosx=1/2x^2

间断点的判断

在这里插入图片描述

渐近线

在这里插入图片描述

在这里插入图片描述
反函数

(8)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导,且:

泰勒中值定理和常见的麦克劳林公式

在这里插入图片描述
在这里插入图片描述

曲线绕x轴体积和表面积公式

在这里插入图片描述

体积
1、绕x轴旋转时,微体积 dV = πy^2dx,或者:dV = π(sinx)^2dx,将dV在0到π之间对x做定积分。

得到:V = ∫π(sinx)^2dx (在0到π区间积分) = ∫π(1-cos2x)/2dx (在0到π区间积分) = 0.5π^2。即,给定函数,绕x轴旋转得到的旋转体体积为 0.5π^2。

2、绕y轴旋转时,微体积 dV = π(2x)ydx,或者:dV = 2πxsinxdx,将dV在0到π之间对x做定积分。

得到:V = ∫ 2πxsinxdx(在0到π区间积分) =2π ∫xsinxdx (在0到π区间积分) = 2π^2。即,给定函数,绕y轴旋转得到的旋转体体积为 2π^2。

表面积
S= ∫πy√1+y’^2dx

曲率及曲率半径

在这里插入图片描述
曲率半径等于曲率倒数

切线方式和法线方程

切线方程y-y0=f’(x0)(x-x0)
在这里插入图片描述
常见的凑微原函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

积分变现问题在0到x区间内积分g(x-t)dt 等于0到x区间内积g(u)du

积分定义求极限 i从1到n的问题

先提出1/n i/n化成x 0到1 对其进行积分
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
常见函数图像
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一阶线性微分方程组
在这里插入图片描述
二阶线性微分方程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
线性代数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
判断向量能否由向量组线性表示,先求A的质在求增广矩阵的质相当就可以表示,不相等不可以表示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值