前言:仅个人小记。质数是数的指纹,是数的钥匙,对一个数质因数分解就是在探求这个数的指纹。公约数则是指共同的钥匙。
a与c互质记为 a ⊥ c a\perp c a⊥c。
证明: 若 a ⊥ c a\perp c a⊥c, b ⊥ c b\perp c b⊥c,则必有 a b ⊥ c ab\perp c ab⊥c
因为
a
⊥
c
a\perp c
a⊥c,
b
⊥
c
b \perp c
b⊥c,所以gcd(a,c)=1,gcd(b,c)=1,此时证明
a
b
⊥
c
ab\perp c
ab⊥c,即要证明gcd(ab,c) = 1。
反证法: 如果ab 与 c不互质,则必然gcd(ab,c) = d > 1。
我们对d进行质因数分解得,
d
=
p
1
p
2
.
.
.
p
s
d = p_1p_2...p_s
d=p1p2...ps
进而,
g
c
d
(
a
b
,
c
)
=
d
=
p
1
p
2
.
.
.
p
s
gcd(ab,c) = d = p_1p_2...p_s
gcd(ab,c)=d=p1p2...ps
故,
p
i
p_i
pi必然是 ab 和 c 的一个公约数,即 ab %
p
i
p_i
pi = 0,c%
p
i
p_i
pi = 0,则又因为
p
i
p_i
pi 是质数,所以,
p
i
p_i
pi不可能是由 a, b 两个数字中的质因子组合而成的一个合数,所以
p
i
p_i
pi 必然来自 a 或者 b,即必然有 a%
p
i
p_i
pi = 0 或者 b %
p
i
p_i
pi = 0,即
p
i
p_i
pi 是 a , c 的一个公约数或者
p
i
p_i
pi 是 b , c 的一个公约数,而这与
a
⊥
c
a \perp c
a⊥c,
b
⊥
c
b \perp c
b⊥c 这两个前提条件矛盾,故而假设不成立,故而必然有
a
b
⊥
c
ab \perp c
ab⊥c,证毕。