欧拉定理推导

前言:仅个人小记。欧拉公式将会应用在RSA公钥密钥中,这里只给出关于欧拉定理的推导。这个证明方法中借助集合论以及互质的数,比较好的展现出如何把欧拉函数与该定理联系起来,进而可以和群论中阶这个概念产生紧密联系,也就是欧拉公式群论中产生紧密联系。

欧拉公式

核心公式: a φ ( m ) % m ≡ 1 , 其 中 a ⊥ m , φ ( ⋅ ) 是 欧 拉 函 数 {a}^{\varphi(m)} \%m\equiv1,其中a\perp m, \varphi(\cdot)是欧拉函数 aφ(m)%m1,am,φ()公式图片展示如下,

前提知识

(1) 欧拉函数 φ ( m ) \varphi(m) φ(m) 是用来衡量m以内与m互质的数的个数 φ ( m ) \varphi(m) φ(m)的计算公式为 φ ( m ) = m ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \varphi(m) = m(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) φ(m)=m(1p11)(1p21)...(1pk1)其中 p 1 , p 2 , . . p k p_1,p_2,..p_k p1,p2,..pk 是 m 的质因数分解结果序列(e.g. 24 = 2 x 2 x 2 x 3, 则质因数分解结果序列为{2, 2, 2, 3})
(2) a ⊥ c a \perp c ac, b ⊥ c b \perp c bc,则 a b ⊥ c ab \perp c abc,参看 https://blog.csdn.net/qq_25847123/article/details/95785264https://blog.csdn.net/qq_25847123/article/details/95765764
(3) 若 a ⊥ c a\perp c ac 且 ab % c = 0, 则必然有 b % c = 0. 参看 https://blog.csdn.net/qq_25847123/article/details/95785264
(4) 欧几里得算法中 g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b) = gcd(b,a \% b) gcd(a,b)=gcd(b,a%b), 参看 https://blog.csdn.net/qq_25847123/article/details/95753295
(5) ab%c = [(a%c)(b%c)]%c

引理准备

(1) m 以内的且与 m互质的数共有 φ ( m ) \varphi(m) φ(m) 个,将它们记为 x 1 , x 2 , . . . , x φ ( m ) x_1,x_2,...,x_{\varphi(m)} x1,x2,...,xφ(m)注意到 x i x_i xi 具有的性质包括 1. x i ⊥ m x_i \perp m xim ; 2. x i = ̸ x j x_i =\not x_j xi=xj
(2) 令 p i = a x i p_i = ax_i pi=axi r i = p i % m r_i = p_i \% m ri=pi%m
(3) 证明: 当 i ≠ j i \neq j i=j 时,恒有

  1. r i = ̸ r j r_i =\not r_j ri=rj
    使用反证法证明如下,
    假设 r i = r j r_i=r_j ri=rj,表示 p i 和 p j p_i和p_j pipj模m同余,即必然有 ( p i − p j ) % m = 0 ( 可 以 默 认 p i > p j ) (p_i-p_j)\%m = 0(可以默认p_i>p_j) (pipj)%m=0pi>pj
    a ( x i − x j ) % m = 0 a(x_i-x_j)\%m=0 a(xixj)%m=0此时,根据 前提知识(3) 可知,因为 a ⊥ m a\perp m am,所以必然有 ( x i − x j ) % m = 0 (x_i - x_j)\%m = 0 (xixj)%m=0,又因为 0 < x i − x j < m 0<x_i-x_j<m 0<xixj<m,所以不可能出现 ( x i − x j ) % m = 0 (x_i - x_j)\%m = 0 (xixj)%m=0,故而矛盾,进而假设不成立,进而必然 r i = ̸ r j r_i =\not r_j ri=rj,证毕!
  2. r i ⊥ m r_i \perp m rim
    借助 前提知识 (2) 和 (4)。因为 x i ⊥ m , p i = a x i x_i \perp m ,p_i=ax_i xim,pi=axi,所以必然有 p i ⊥ m p_i \perp m pim,这就意味着 g c d ( p i , m ) = 1 gcd(p_i,m) = 1 gcd(pi,m)=1而根据欧几里得算法知 g c d ( m , r i ) = g c d ( m , p i % m ) = g c d ( p i , m ) = 1 gcd(m,r_i)=gcd(m,p_i\%m)=gcd(p_i,m)=1 gcd(m,ri)=gcd(m,pi%m)=gcd(pi,m)=1所以 m ⊥ r i m\perp r_i mri.证毕!

进一步分析发现, x i x_i xi m 以内且与 m 互质的数,而 r i r_i ri也是 m 以内且与 m 互质的数。 p i , x i , r i p_i, x_i, r_i pi,xi,ri三者关系如下图,

欧拉公式证明

因为集合R = 集合X,所以必然有 Π r i = Π x i \Pi r_i=\Pi x_i Πri=Πxi进一步, Π ( p i % m ) = Π x i \Pi (p_i\%m) = \Pi x_i Π(pi%m)=Πxi进一步, ( Π ( p i % m ) ) % m = Π x i (\Pi(p_i\%m))\%m=\Pi x_i (Π(pi%m))%m=Πxi根据前提知识(5),进一步有 ( Π p i ) % m = ( Π x i ) % m (\Pi p_i)\%m =(\Pi x_i)\%m (Πpi)%m=(Πxi)%m进一步, ( a φ ( m ) Π x i ) % m = ( Π x i ) % m (a^{\varphi(m)}\Pi x_i)\%m=(\Pi x_i)\%m (aφ(m)Πxi)%m=(Πxi)%m进一步有,

( Π x i ( a φ ( m ) − 1 ) ) % m = 0 (\Pi x_i(a^{\varphi(m)}-1))\%m=0 (Πxi(aφ(m)1))%m=0因为 x i ⊥ m x_i \perp m xim,根据前提知识(2),则 Π x i ⊥ m \Pi x_i \perp m Πxim,再根据前提知识(3),则有
( a φ ( m ) − 1 ) % m = 0 (a^{\varphi(m)}-1)\%m=0 (aφ(m)1)%m=0 a φ ( m ) % m = 1 a^{\varphi(m)}\%m=1 aφ(m)%m=1
证毕!

邮箱: officeforcsdn@163.com
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值