前言:仅个人小记。欧拉公式将会应用在RSA公钥密钥中,这里只给出关于欧拉定理的推导。这个证明方法中借助集合论以及互质的数,比较好的展现出如何把欧拉函数与该定理联系起来,进而可以和群论中阶这个概念产生紧密联系,也就是欧拉公式和群论中产生紧密联系。
欧拉公式
核心公式: a φ ( m ) % m ≡ 1 , 其 中 a ⊥ m , φ ( ⋅ ) 是 欧 拉 函 数 {a}^{\varphi(m)} \%m\equiv1,其中a\perp m, \varphi(\cdot)是欧拉函数 aφ(m)%m≡1,其中a⊥m,φ(⋅)是欧拉函数公式图片展示如下,

前提知识
(1) 欧拉函数
φ
(
m
)
\varphi(m)
φ(m) 是用来衡量m以内且与m互质的数的个数。
φ
(
m
)
\varphi(m)
φ(m)的计算公式为
φ
(
m
)
=
m
(
1
−
1
p
1
)
(
1
−
1
p
2
)
.
.
.
(
1
−
1
p
k
)
\varphi(m) = m(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k})
φ(m)=m(1−p11)(1−p21)...(1−pk1)其中
p
1
,
p
2
,
.
.
p
k
p_1,p_2,..p_k
p1,p2,..pk 是 m 的质因数分解结果序列(e.g. 24 = 2 x 2 x 2 x 3, 则质因数分解结果序列为{2, 2, 2, 3})
(2)
a
⊥
c
a \perp c
a⊥c,
b
⊥
c
b \perp c
b⊥c,则
a
b
⊥
c
ab \perp c
ab⊥c,参看 https://blog.csdn.net/qq_25847123/article/details/95785264 或 https://blog.csdn.net/qq_25847123/article/details/95765764
(3) 若
a
⊥
c
a\perp c
a⊥c 且 ab % c = 0, 则必然有 b % c = 0. 参看 https://blog.csdn.net/qq_25847123/article/details/95785264
(4) 欧几里得算法中
g
c
d
(
a
,
b
)
=
g
c
d
(
b
,
a
%
b
)
gcd(a,b) = gcd(b,a \% b)
gcd(a,b)=gcd(b,a%b), 参看 https://blog.csdn.net/qq_25847123/article/details/95753295
(5) ab%c = [(a%c)(b%c)]%c
引理准备
(1) m 以内的且与 m互质的数共有
φ
(
m
)
\varphi(m)
φ(m) 个,将它们记为
x
1
,
x
2
,
.
.
.
,
x
φ
(
m
)
x_1,x_2,...,x_{\varphi(m)}
x1,x2,...,xφ(m)注意到
x
i
x_i
xi 具有的性质包括 1.
x
i
⊥
m
x_i \perp m
xi⊥m ; 2.
x
i
=
̸
x
j
x_i =\not x_j
xi=xj
(2) 令
p
i
=
a
x
i
p_i = ax_i
pi=axi,
r
i
=
p
i
%
m
r_i = p_i \% m
ri=pi%m
(3) 证明: 当
i
≠
j
i \neq j
i=j 时,恒有
-
r
i
=
̸
r
j
r_i =\not r_j
ri=rj
使用反证法证明如下,
假设 r i = r j r_i=r_j ri=rj,表示 p i 和 p j p_i和p_j pi和pj模m同余,即必然有 ( p i − p j ) % m = 0 ( 可 以 默 认 p i > p j ) (p_i-p_j)\%m = 0(可以默认p_i>p_j) (pi−pj)%m=0(可以默认pi>pj)
即 a ( x i − x j ) % m = 0 a(x_i-x_j)\%m=0 a(xi−xj)%m=0此时,根据 前提知识(3) 可知,因为 a ⊥ m a\perp m a⊥m,所以必然有 ( x i − x j ) % m = 0 (x_i - x_j)\%m = 0 (xi−xj)%m=0,又因为 0 < x i − x j < m 0<x_i-x_j<m 0<xi−xj<m,所以不可能出现 ( x i − x j ) % m = 0 (x_i - x_j)\%m = 0 (xi−xj)%m=0,故而矛盾,进而假设不成立,进而必然 r i = ̸ r j r_i =\not r_j ri=rj,证毕! -
r
i
⊥
m
r_i \perp m
ri⊥m
借助 前提知识 (2) 和 (4)。因为 x i ⊥ m , p i = a x i x_i \perp m ,p_i=ax_i xi⊥m,pi=axi,所以必然有 p i ⊥ m p_i \perp m pi⊥m,这就意味着 g c d ( p i , m ) = 1 gcd(p_i,m) = 1 gcd(pi,m)=1而根据欧几里得算法知 g c d ( m , r i ) = g c d ( m , p i % m ) = g c d ( p i , m ) = 1 gcd(m,r_i)=gcd(m,p_i\%m)=gcd(p_i,m)=1 gcd(m,ri)=gcd(m,pi%m)=gcd(pi,m)=1所以 m ⊥ r i m\perp r_i m⊥ri.证毕!
进一步分析发现, x i x_i xi是 m 以内且与 m 互质的数,而 r i r_i ri也是 m 以内且与 m 互质的数。 p i , x i , r i p_i, x_i, r_i pi,xi,ri三者关系如下图,

欧拉公式证明
因为集合R = 集合X,所以必然有 Π r i = Π x i \Pi r_i=\Pi x_i Πri=Πxi进一步, Π ( p i % m ) = Π x i \Pi (p_i\%m) = \Pi x_i Π(pi%m)=Πxi进一步, ( Π ( p i % m ) ) % m = Π x i (\Pi(p_i\%m))\%m=\Pi x_i (Π(pi%m))%m=Πxi根据前提知识(5),进一步有 ( Π p i ) % m = ( Π x i ) % m (\Pi p_i)\%m =(\Pi x_i)\%m (Πpi)%m=(Πxi)%m进一步, ( a φ ( m ) Π x i ) % m = ( Π x i ) % m (a^{\varphi(m)}\Pi x_i)\%m=(\Pi x_i)\%m (aφ(m)Πxi)%m=(Πxi)%m进一步有,
(
Π
x
i
(
a
φ
(
m
)
−
1
)
)
%
m
=
0
(\Pi x_i(a^{\varphi(m)}-1))\%m=0
(Πxi(aφ(m)−1))%m=0因为
x
i
⊥
m
x_i \perp m
xi⊥m,根据前提知识(2),则
Π
x
i
⊥
m
\Pi x_i \perp m
Πxi⊥m,再根据前提知识(3),则有
(
a
φ
(
m
)
−
1
)
%
m
=
0
(a^{\varphi(m)}-1)\%m=0
(aφ(m)−1)%m=0即
a
φ
(
m
)
%
m
=
1
a^{\varphi(m)}\%m=1
aφ(m)%m=1
证毕!
