作者信息
Haidong Zhu, Tsinghua 电机系
文章针对医学影像中标注质量的痛点进行了探究,pick & learn,顾名思义,文章用到的解决方法为:对每个mini-batch中样本的标注质量进行评分,然后根据标注质量高低对相应样本的loss进行加权,得到mini-batch的最终loss后再反向传播,更新网络。
Method
如下为方法框图,包含3个主要模块:segmentation module,quality awareness module(QAM),overfitting control module (OCM)

QAM(quality awareness module)
QAM是与segmentation module平行的分支,它的输入为图像+label(n+1通道数),结构为VGG网络,最后一层为average pooling(AVP)层,输出batch中每个sample 的 标注质量分数,再接上一个 softmax 层,使得一个batch中分数总和为1.

该研究提出了一种名为Pick-and-Learn的方法,用于医学图像分割任务中自动评估标注质量。通过QAM模块对样本标注质量打分,OCM模块控制过拟合,确保网络在训练过程中合理分配不同质量标注样本的权重。实验结果显示,这种方法能够有效区分并调整干净样本和噪声样本的权重,提高模型的训练效果。
最低0.47元/天 解锁文章

740

被折叠的 条评论
为什么被折叠?



