[论文笔记] SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation

文章于2017年6月提交到Arxiv,投稿于 Neuroinformatics (2018),Published online: 3 May 2018
作者单位:Department of Computer Science and Engineering,Lehigh University
文章截止2019.3.25的引用量为50
文章代码见github


这篇文章主要的创新点在于不同于之前的公式化loss,作者设计了一个可以进行学习的loss函数(一个神经网络的输出作为loss);并借鉴GAN训练的思路,采用min-max的对抗学习模式来训练segment网络和loss网络,得到了当前(2017年)state-of-art的分割结果。此外,作者没有直接用预测图与ground truth二值图计算loss,而是分别利用它们对原图进行掩膜后再计算loss,也是一个很好的idea。


问题的提出

首先,作者提出了一个问题:在医学图像分割中,当前(2017年)state-of-art的网络结构Unet存在的一个问题是无法有效解决图像中像素类别不平衡的问题。针对这个问题,之前有人提出过用weighted cross-entropy loss来进行优化,但是作者认为这个weghted loss 的问题是 task-specific 以及难以优化的。

作者基于上述问题,并借鉴了GAN的思路,设计了新的分割网络,并提出了Multi-scale L1 Loss来优化分割网络。

网络结构

在这里插入图片描述
整个网络分为segmentor和critic两部分:
1、segmentor部分为普通的unet结构,encoder部分为4层stride=2的卷积,decoder部分为4层upsample,输出为网络预测的肿瘤二值图像;
2、critic部分的网络共用segmentor部分encoder的前三层,分别向critic部分输入经预测的肿瘤二值图掩膜的原始输入图像,以及经真值肿瘤二值图掩膜的原始输入图像,最后的loss计算两个不同输出之间的MAE值(L1 loss)。其中Multi-scale体现在对critic部分每一个卷积层输出的特征图像都计算MAE值,最后的总loss取平均
3、训练方式类似于GAN的min-max对抗学习过程。首先,固定S(segmentor),对C(critic)进行一轮训练;再固定C(critic),对S(segmentor)进行一轮训练,如此反复。对 critic 的训练想使loss变大(min),对 segmentor 训练想使loss变小(max)。
其loss函数如下式所示:
在这里插入图片描述

训练的稳定性与收敛性证明

1、首先定义几个概念:
f : χ → χ ′ f: \chi \rightarrow \chi^{'}

  • 0
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
Segan方法是一种高效的音频去噪技术,它可以有效地将噪音从音频信号中去除。Segan方法基于生成式对抗网络(GAN),通过训练一个生成器网络和一个判别器网络来实现音频去噪的过程。 Segan方法的主要思想是使用生成器网络来从含噪音的音频中学习噪音模型,并通过生成器产生去噪音频。与此同时,判别器网络被训练来区分真实音频和生成器生成的音频。通过反复训练这两个网络,生成器逐渐学习到如何生成更准确的去噪音频,而判别器则逐渐变得更加准确,能够更好的区分真实音频和生成器生成的音频。 Segan方法有几个关键的步骤。首先,需要为生成器和判别器设计合适的网络结构。一般而言,生成器使用卷积神经网络来学习噪音模型和生成去噪音频,而判别器则使用卷积神经网络分类器来区分真实音频和生成的音频。 其次,Segan方法需要大量的训练数据来训练生成器和判别器网络。这些数据通常为包含噪音的音频和对应的去噪音频。 最后,在训练过程中,生成器和判别器使用对抗学习的方法进行迭代。生成器生成去噪音频,而判别器则根据生成器生成的音频和真实音频进行分类。生成器的目标是生成误导判别器的音频,从而使判别器无法区分出真实音频和生成的音频。 通过反复迭代训练,Segan方法不断优化生成器和判别器网络,使生成的去噪音频逐渐与真实音频更加接近,从而实现了高质量的音频去噪效果。 总的来说,Segan方法是一种基于生成式对抗网络的音频去噪技术,通过训练生成器和判别器网络,能够有效地去除音频中的噪音,提高音频质量。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值