[论文笔记] SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation

文章于2017年6月提交到Arxiv,投稿于 Neuroinformatics (2018),Published online: 3 May 2018
作者单位:Department of Computer Science and Engineering,Lehigh University
文章截止2019.3.25的引用量为50
文章代码见github


这篇文章主要的创新点在于不同于之前的公式化loss,作者设计了一个可以进行学习的loss函数(一个神经网络的输出作为loss);并借鉴GAN训练的思路,采用min-max的对抗学习模式来训练segment网络和loss网络,得到了当前(2017年)state-of-art的分割结果。此外,作者没有直接用预测图与ground truth二值图计算loss,而是分别利用它们对原图进行掩膜后再计算loss,也是一个很好的idea。


问题的提出

首先,作者提出了一个问题:在医学图像分割中,当前(2017年)state-of-art的网络结构Unet存在的一个问题是无法有效解决图像中像素类别不平衡的问题。针对这个问题,之前有人提出过用weighted cross-entropy loss来进行优化,但是作者认为这个weghted loss 的问题是 task-specific 以及难以优化的。

作者基于上述问题,并借鉴了GAN的思路,设计了新的分割网络,并提出了Multi-scale L1 Loss来优化分割网络。

网络结构

在这里插入图片描述
整个网络分为segmentor和critic两部分:
1、segmentor部分为普通的unet结构,encoder部分为4层stride=2的卷积,decoder部分为4层upsample,输出为网络预测的肿瘤二值图像;
2、critic部分的网络共用segmentor部分encoder的前三层,分别向critic部分输入经预测的肿瘤二值图掩膜的原始输入图像,以及经真值肿瘤二值图掩膜的原始输入图像,最后的loss计算两个不同输出之间的MAE值(L1 loss)。其中Multi-scale体现在对critic部分每一个卷积层输出的特征图像都计算MAE值,最后的总loss取平均
3、训练方式类似于GAN的min-max对抗学习过程。首先,固定S(segmentor),对C(critic)进行一轮训练;再固定C(critic),对S(segmentor)进行一轮训练,如此反复。对 critic 的训练想使loss变大(min),对 segmentor 训练想使loss变小(max)。
其loss函数如下式所示:
在这里插入图片描述

训练的稳定性与收敛性证明

1、首先定义几个概念:
f : χ → χ ′ f: \chi \rightarrow \chi^{'}

  • 0
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值