漫谈实数(一)

实数(real number) 在1871年由德国数学家康托儿提出,记作 R \mathbb{R} R,意味所有有理数与无理数之并.在这我暂且不展示奇技淫巧,大抵上希望能提供些新观点以供大家思考

很久之前一直是有理数(rational number) 的天下,这种局面持续了很久直到 2 \sqrt{2} 2 的出现.事实上有理数这三个字,起源多半由于舶来时各种失误,丢失了ratio(比例)这个有理数的本意,误会成了相近的"rational",后人用 Q \mathbb{Q} Q(quotient)来指代有理数域

事实上有理数作为一个代数结构而言相当稳固,有理数的(有限次)四则运算具有封闭性,换而言之粗浅的计算并不会带来任何困扰,与此同时我们做个trick引入小数,事实上希腊当时发现 1 3 \frac{1}{3} 31除不出索性就把这个当做一个结果,可谓是设而不求的先驱了,我们如今当然是知道 0.3333 ⋯ 0.3333\cdots 0.3333这个记法,这么一来无理数(无限不循环小数)以及实数的诞生就显然了.
回到 2 \sqrt{2} 2 ,我们发现他没办法写成一个比例的形式,但这个说对于朴素的人们而言又有着奇妙的魔力,为此我们把原有的有理数域给扩张成了 Q ( 2 ) \mathbb{Q}(\sqrt2) Q(2 ).
这里不对域扩张做更多解释,我们理解 Q ( 2 ) \mathbb{Q}(\sqrt2) Q(2 ) { a + b 2 ∣ a , b ∈ Q } \{a+b\sqrt{2}|a,b\in \mathbb{Q}\} {a+b2 a,bQ}.这么做的好处是显然的: x 2 − 2 = 0 x^2-2=0 x22=0
这样一个方程我们在 Q \mathbb{Q} Q上是无解的,但是我们也不必涉及到 R \mathbb{R} R,因此我们人为给这个方程增添了一个根叫做 2 \sqrt{2} 2 .可能会有人纠结 − 2 -\sqrt{2} 2 ,事实上从代数上而言 Q ( 2 ) \mathbb{Q}(\sqrt2) Q(2 ) Q ( − 2 ) \mathbb{Q}(-\sqrt2) Q(2 )是一致(同构)的,而且这个元素增添不影响封闭性: ( a + b 2 ) + ( c + d 2 ) = ( a + b ) + ( c + d ) 2 (a+b\sqrt2)+(c+d\sqrt2)=(a+b)+(c+d)\sqrt2 (a+b2 )+(c+d2 )=(a+b)+(c+d)2 ( a + b 2 ) ( c + d 2 ) = ( a c + 2 b d ) + ( a d + b c ) 2 (a+b\sqrt2)(c+d\sqrt2)=(ac+2bd)+(ad+bc)\sqrt2 (a+b2 )(c+d2 )=(ac+2bd)+(ad+bc)2

  • 考虑方程 x 3 − 2 = 0 x^3-2=0 x32=0,我们定义 θ 3 = 2 \theta ^3=2 θ3=2,则我们可将 Q \mathbb{Q} Q扩充为 Q ( θ , θ 2 ) = { a + b θ + c θ 2 ∣ a , b , c ∈ Q } Q(\theta,\theta^2)=\{a+b\theta+c\theta^2|a,b,c\in\mathbb{Q}\} Q(θ,θ2)={a+bθ+cθ2a,b,cQ}
    不难发现,我们可以将这里的 1 , θ , θ 2 1,\theta,\theta^2 1,θ,θ2当做一组基(basis) 来看,顺带一提,上述例题中 ( 1 + θ ) − 1 = θ 2 − θ + 1 3 (1+\theta)^{-1}=\frac{\theta^2-\theta+1}{3} (1+θ)1=3θ2θ+1
    再顺带一提,这里扩域可以自然延伸到多项式环上.
    单扩张会增加一些有趣的结论,比如我们知道在 Z \mathbb{Z} Z 7 7 7是一个素数,但倘若我们扩张成 Z ( 2 ) \mathbb{Z}(\sqrt2) Z(2 ),则有 7 = ( 3 + 2 ) ( 3 − 2 ) 7=(3+\sqrt2)(3-\sqrt2) 7=(3+2 )(32 ),我们将类似的概念称为不可约
  • 化简 7 + 5 3 + 4 2 2 1 + 6 + 1 4 + 3 \frac{\sqrt7+5\sqrt3+4\sqrt2}{\sqrt21+\sqrt6+\sqrt14+3} 2 1+6 +1 4+37 +53 +42
    这里多了六个根式,但注意到其中 7 , 3 , 2 \sqrt7,\sqrt3,\sqrt2 7 ,3 ,2 是不可约的,不妨将其当做“基”来看待(这里可能有些歧义),则原式可转化为 3 + 7 + 4 ( 3 + 2 ) ( 3 + 7 ) ( 3 + 2 ) = 7 − 2 \frac{\sqrt3+\sqrt7+4(\sqrt3+\sqrt2)}{(\sqrt3+\sqrt7)(\sqrt3+\sqrt2)}=\sqrt7-\sqrt2 (3 +7 )(3 +2 )3 +7 +4(3 +2 )=7 2

初中数学把实数分成无理数和有理数 这么分自然没错,但少了许多美感,我们从这几个角度出发去思考
对有理数而言,它除了有着封闭性还有着稠密性,即任意两个不同的有理数之间必定有着不同的第三个有理数,这点是离散的整数所不具备的,然而人们发现即便如此该性质还是不足够填充满一条实直线(数轴),为此我们可以参考戴德金的分割法,以此基础我们可以说是填满了整条数轴,因此可以说实数和整条数轴一一对应,这点是有理数所不具备的
倘若把填满数轴用近代的话描述,即实数具备完备性,即收敛(柯西)实数点列收敛得到的必定是实数,这点 Q \mathbb{Q} Q就不具备,比如 ( 1 + 1 n ) n (1+\frac{1}{n})^n (1+n1)n点列收敛到无理数 e \mathbb{e} e

至此我们解释了两种实数的由来,一是填充满实直线,二是要求任意柯西列收敛.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值