漫谈实变函数

作者:Xtaobingmo
链接:https://www.zhihu.com/question/337651635/answer/987965987
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

我从抽象形式的角度来说一说。这里的抽象不是说概念的抽象,比如开区间闭区间推广成开集闭集,而是说玩法上的抽象。

举一个例子:

网络上有个视频——实变函数四川大学陈闯,他一开始基本就是按照陶哲轩实分析的书上的顺序讲解实数系。这个东西我觉得对于入门测度非常重要。实数他有三部分,第一部分是加减乘除,第二部分是取极限,第三部分是序关系也就是比大小。

先抛开序关系。其实构建实数系是有顺序的,先构建起加减乘除系统,也就是说先是个数域。然后再引进极限,构成完备的数域。按照书上的说法就是,从自然数对减法不封闭扩张到整数,整数对加减乘封闭,但是对于除法不封闭,再次扩张到有理数,有理数便是一个对加减乘除封闭的数域。这里的两次扩张其实从玩法上都是一样的,第一步做笛卡尔积扩出去,第二步利用等价关系缩回来。实数系是一元数学分析的基础,舞台。一元实函数就是实数系到实数系的映射。

数学分析的基础就是以数字为元素构成的系统——实数系,和数学分析不太一样,除了实数系以外,实变函数还有一个基础、舞台就是以集合为元素构成的系统。下面来模仿实数系构建这个系统。首先对应于数字的加减乘除,也就是代数运算,类似的集合中有交并补差。这里没有像自然数,整数,有理数,那么麻烦,我们直接一步到位,给出环和代数的概念,代数基本上就是对于交并补差封闭的集合系统,类似于数字的有理数域。

在有限的领域,对于代数运算,我们说数字有加减乘除,集合有交并补差,对于代数运算封闭的系统,数字叫做有理数域,集合就叫做代数(代数就是对于交并补差封闭的集族)。下面进入无限的领域。

我们知道数字定义极限的时候借用了绝对值这样的概念,集合中没有这样的东西,那么可以迂回一下,借助级数这种形式来让集合的代数运算扩展到分析运算。从数学分析中可以知道,级数就是普通的加法一直加下去,没完没了加下去(当然本质上和有限的加法不一样)。所以级数也就是另一种数列极限的表现方式。那么集合的交并运算也可以采取同样的方式,一直交下去或者一直并下去,采用这种形式就可以定义集合的分析运算,就是无限交和无限并,当然重点是可列交和可列并。

所以对应于数字的极限运算,集合中的类似于分析运算的东西就是无限交无限并(重点研究特殊的无限,可列运算)然后类似于数字的对取极限封闭的实数域,集合中就是对于可列运算封闭的 σ 代数。

这里注意顺序的问题,对极限运算封闭是在对于代数运算封闭的基础之上的,也就是说对于数字,先得到的是个域,然后再对极限封闭才有了实数域。仅仅对极限封闭随便一个闭集就行,比如说【0,1】也就是0,1闭区间。对于集合来说是同样的, σ 代数首先得是个代数,然后再对取极限运算封闭扩张到 σ 代数。如果仅仅考虑极限运算的话,也有类似的概念比如说单调类。

最后我们看到,对于数字有以下这些概念:加减乘除,有理数域,取极限,实数域。

对于集合有以下这些对应的概念:交并补差,代数,可列并可列交, ​​​​​​​σ 代数。

我们说数学分析是在实数域上展开的,那么其实实变函数是在实数域和 ​​​​​​​σ 代数上展开的。也就是说实变函数他有两个舞台。所以对应的函数也有两种,实数域到实数域的函数,也就是实函数,还有一种是 ​​​​​​​σ 代数到实数的函数,也就是集函数。

​​​​​​​σ 代数在数学分析里是没有的,我们得到他的方式就是在模仿实数域,在集合系统也就是集族上构建一个对于代数运算和分析运算都封闭的系统来玩分析。对于序结构,集合系统减弱了,他仅仅是个偏序。

再进一步实数域上有数列的概念, ​​​​​​​σ 代数上也可以有集列的概念。数列有收敛的概念,定义集列收敛的概念还是需要利用数列收敛的充要条件来迂回一下。(大多数推广都是这样的,新概念对应于旧概念能推广的直接推广,不能推广的看看有没有什么充要条件能迂回,避开新的概念没有的性质)。这里的推广也体现了实变里面老玩一个东西;造单调。具体的过程就是数列的极限可以使上下极限相等。对应集列造单调给出上下极限,然后上下极限的两个集合一样就说是有极限。

把测度理解成给一个集合,然后就对应这个集合的“长度”,这样理解可以,但是过于局部。除了这种局部理解外,还要知道他和实函数差不多,只不过定义域换成了集合算数系统,也就是 ​​​​​​​σ 代数。这样的话一些概念很自然,比如说测度有上半连续下半连续,只要知道实函数的连续就是 很自然的推广到集函数。

举一个例子(完)。

这个例子想要表达的意思就是说,数学分析是实变函数的基础,前置。但是这种承接关系不仅仅是知识上的,还有思想方法和玩法上的。从知识衔接的角度来说,知识仅仅是会而不是非常熟练的话没关系,大不了我实变一个定理要用到数分的知识我忘了我再回去翻翻书就行了。但是如果不是非常超级熟练的话就很难洞穿知识背后所承载的思想方法和玩法。导致的结果就是学习后续课程的时候要是细扣逻辑,都没问题,但是看了半天完全不知道这门课在干什么。

从数学分析出发模仿算术系统,我们得到了集合为元素的(集族)算数系统, ​​​​​​​σ 代数。然后除了实函数,实变比数学分析多了集函数。有了这些工具就有了可测函数,勒贝格积分。当然反过来作为辅助构建积分辅助研究的集函数本身,在实变函数的后边也进行了一定的研究,也就是说加深了对集函数这种新型函数的理解。集函数拓宽了函数的概念,这一点在广义函数中能有很好的体现。当然对于实变函数来说重要的还是,引入了新的东西深化了数学分析。

只要能理解玩法这种东西,入门本科的泛函分析也是简单的。线数代数那点东西是有限维,我再把多元微积分那套东西拿出来,也就是拓扑。有了线性代数的那套形式和拓扑,利用级数的形式化,将空间推进到无穷维。当然说拓扑有点过了,特殊点,度量空间,或者再特殊点,度量和数乘运算保持和谐,范数吧,要么在特殊点,内积。

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Java安全漫谈是一本关于Java安全的书籍,深入探讨了Java应用程序在网络环境中的安全性和相关的安全漏洞。该书内容涵盖了Java安全基础、Java虚拟机的安全机制、Java安全管理、Java安全开发等方面的知识。 首先,Java安全基础部分介绍了Java安全模型的原理和特点,包括Java类库的安全特性、权限管理和访问控制、安全策略配置等。这部分内容可帮助开发人员了解Java应用程序的安全需求,并提供相应的解决方案。 其次,Java虚拟机的安全机制是Java应用程序的基石。该书介绍了Java虚拟机的安全沙箱和类加载机制,并讨论了如何利用这些安全机制避免恶意代码的执行和隐患的防范。 此外,Java安全管理部分从用户角度出发,介绍了Java应用程序的安全管理工具和技术,如Java安全策略文件、权限管理和安全认证等。开发人员可以通过合理配置和使用这些工具来提高Java应用程序的安全性。 最后,该书还涉及了Java安全开发过程中的一些最佳实践和常见安全漏洞,如输入验证、跨站脚本攻击(XSS)、SQL注入、跨站请求伪造(CSRF)等。通过学习和掌握这些知识,开发人员可以编写出更加安全的Java应用程序。 总而言之,Java安全漫谈是一本全面讨论Java安全的书籍,内容涵盖了Java安全基础、Java虚拟机的安全机制、Java安全管理和Java安全开发等方面的知识。它对于开发人员和安全从业人员来说,都是一本重要的参考书,有助于提高Java应用程序的安全性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值