概率论的基本概念

本文详细介绍了概率论的基本概念,包括事件的运算、概率的性质、古典概率和几何概率的计算。还讨论了事件的关系,如包含、相等、互不相容和对立,并探讨了概率的加法、减法和乘法公式。此外,解释了全概率公式和贝叶斯公式,以及条件概率的概念。最后,通过实例分析了条件概率的计算和事件独立性的判断。
摘要由CSDN通过智能技术生成

概率论的基本概念

事件

事件的运算

A , B A,B A,B是两个事件

A + B : A+B: A+B:

A , B A,B A,B至少有一个发生的事件

A − B A-B AB:

C = A ∩ B C=A\cap B C=AB
A − B A-B AB: A A A发生但是不是发生在 C C C的事件
如果 C = ∅ C=\varnothing C= A − B = A A-B=A AB=A减了个寂寞

积: A B = A ∩ B AB=A\cap B AB=AB

A B = A ∩ B AB=A\cap B AB=AB: A , B A,B A,B都发生的事件
A ∩ B = ∅ A\cap B=\varnothing AB= A B = ∅ AB=\varnothing AB=是永远不会发生的事件

事件的关系:

A , B A,B A,B是两个事件

1.包含关系 A ⊆ B A\subseteq B AB

在这里插入图片描述
A事件是B事件的子事件,知道A发生则必有B发生,但是知道B发生不一定A发生

2.相等关系

A ⊆ B A\subseteq B AB并且 B ⊆ A B\subseteq A BA

3.互不相容关系

A ∩ B = ∅ A\cap B=\varnothing AB=在venn图上的表示是:
在这里插入图片描述

4.对立关系

A , B A,B A,B有且必有一个发生
在这里插入图片描述

概率:

概率基础性质:

有限可加性: P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^n A_i)=\sum\limits_{i=1}^nP(A_i) P(i=1nAi)=i=1nP(Ai)

A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An为互不相容事件,即 ∀ i ∀ j , i ≠ j ⇒ A i ∩ A j = ∅ \forall i\forall j,i≠j\Rightarrow A_i\cap A_j=\varnothing ij,i=jAiAj=
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^n A_i)=\sum\limits_{i=1}^nP(A_i) P(i=1nAi)=i=1nP(Ai)
含义:若干个互不相容事件至少有一件发生的概率等于该若干件互不相容事件概率的总和

减法公式

P ( B − A ) P(B-A) P(BA)
考虑两种情形
1. A ⊆ B A\subseteq B AB
此时减法的含义:B事件发生但是其子事件A不发生的概率
在这里插入图片描述

即发生在黄色区域的概率 P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A)
2. B ‾ ∩ A ≠ ∅ \overline B\cap A≠\varnothing BA= B ∩ A ≠ ∅ B\cap A≠\varnothing BA=
在这里插入图片描述
此时 P ( B − A ) P(B-A) P(BA)表示发生在黄色区域的概率
C = A ∩ B C=A\cap B C=AB表示A和B的公共子事件区域
P ( B − A ) = P ( B − C ) = P ( B − A ∩ B ) = P ( B ∩ Ω − B ∩ A ) = P ( B ∩ ( Ω − A ) ) = P ( B ∩ A ‾ ) = P ( B A ‾ ) P(B-A)\\=P(B-C)\\=P(B-A\cap B)\\=P(B\cap \Omega-B\cap A)\\=P(B\cap (\Omega-A))\\=P(B\cap \overline A)\\=P(B\overline A) P(BA)=P(BC)=P(BAB)=P(BΩBA)=P(B(ΩA))=P(BA)=P(BA)

加法公式: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
A或B发生的概率=A发生的概率+B发生的概率-A,B都发生的概率
C = A ∪ B C=A\cup B C=AB C C C在计算 A + B A+B A+B的时候被算了两次,应当减去一次
在这里插入图片描述
变形: P ( A ∪ B ) + P ( A ∩ B ) = P ( A ) + P ( B ) P(A\cup B)+P(A\cap B)=P(A)+P(B) P(AB)+P(AB)=P(A)+P(B)
发生在A,B整体上的概率-发生在A,B公共部分的概率=发生在A,B私自部分的概率和

古典概率

定义:

设概率空间为 Ω = { ω 1 , ω 2 , . . . , ω n } , n ∈ N + \Omega=\{\omega_1,\omega_2,...,\omega_n\},n\in N^+ Ω={ω1,ω2,...,ωn},nN+
每个基本事件 { ω i } \{\omega_i\} {ωi}发生的概率相等
则称这种随机试验为古典概型

计算:

A = { ω i 1 , ω i 2 , . . . . ω i k } A=\{\omega_{i_1},\omega_{i_2},....\omega_{i_k}\} A={ωi1,ωi2,....ωik}表示事件A由k个 Ω \Omega Ω中的基本事件组成,则A发生的概率为:
P ( A ) = ∣ A ∣ ∣ Ω ∣ = k n P(A)=\frac{|A|}{|\Omega|}=\frac{k}{n} P(A)=ΩA=nk

常见模型:
摸球模型:

袋里有 a a a个白球, b b b个黑球
A i A_i Ai为事件:第i次摸球,摸到白球
(1)任意摸一个后放回摇匀,求第 n n n次摸到白球的概率
显然每次摸球时白球总是 a a a个,黑球总是 b b b个不变,
P ( A i ) = 白 球 个 数 球 总 数 = a a + b P(A_i)=\frac{白球个数}{球总数}=\frac{a}{a+b} P(Ai)==a+ba
(2)任意摸一个不放回,求第 n n n次摸到白球的概率(抽签原则)
显然第一次摸到白球的概率为 P ( A 1 ) = a a + b P(A_1)=\frac{a}{a+b} P(A1)=a+ba
第二次摸球的时候要应用条件概率的全概率公式:
P ( A 2 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) + P ( A 1 ‾ ) P ( A 2 ∣ A 1 ‾ ) P(A_2)=P(A_1)P(A_2|A_1)+P(\overline {A_1})P(A_2|\overline {A_1}) P(A2)=P(A1)P(A2A1)+P(A1)P(A2A1)
其中 P ( A 1 ) = a a + b , P ( A 1 ‾ ) = b a + b , P ( A 2 ∣ A 1 ) = a − 1 a + b − 1 , P ( A 2 ∣ A 1 ‾ ) = a a + b − 1 P(A_1)=\frac{a}{a+b},P(\overline {A_1})=\frac{b}{a+b},P(A_2|A_1)=\frac{a-1}{a+b-1},P(A_2|\overline {A_1})=\frac{a}{a+b-1} P(A1)=a+ba,P(A1)=a+bb,P(A2A1)=a+b1a1,P(A2A1)=a+b1a
P ( A 2 ) = a a + b × a − 1 a + b − 1 + b a + b × a a + b − 1 = a ( a + b − 1 ) ( a + b ) ( a + b − 1 ) = a a + b P(A_2)=\frac{a}{a+b}\times \frac{a-1}{a+b-1}+\frac{b}{a+b}\times \frac{a}{a+b-1}\\=\frac{a(a+b-1)}{(a+b)(a+b-1)}=\frac{a}{a+b} P(A2)=a+ba×a+b1a1+a+bb×a+b1a=(a+b)(a+b1)a(a+b1)=a+ba
发现 P ( A 2 ) = P ( A 1 ) P(A_2)=P(A_1) P(A2)=P(A1)再联系抽签的公平性,假设 P ( A n ) = P ( A n − 1 ) = . . . = P ( A 1 ) = a a + b P(A_n)=P(A_{n-1})=...=P(A_1)=\frac{a}{a+b} P(An)=P(An1)=...=P(A1)=a+ba
设第 n n n次摸球时有 a n a_n an个白球, b n b_n bn个黑球,则 P ( A n ) = a n a n + b n P(A_n)=\frac{a_n}{a_n+b_n} P(An)=an+bnan

P ( A n + 1 ) = P ( A n ) P ( A n + 1 ∣ A n ) + P ( A n ‾ ) P ( A n + 1 ∣ A n ‾ ) = a n a n + b n = P ( A n ) P(A_{n+1})=P(A_n)P(A_{n+1}|A_n)+P(\overline {A_n})P(A_{n+1}|\overline {A_n})=\frac{a_n}{a_n+b_n}=P(A_n) P(An+1)=P(An)P(An+1An)+P(An)P(An+1An)=an+bnan=P(An)
证毕
(3)推广到袋子里有三种球, a a a个白, b b b个黑, c c c个红,求不放回摸球第 n n n次摸到白球的概率
设事件 A i , B i , C i A_i,B_i,C_i Ai,Bi,Ci分别表示第i次摸球摸到白,黑,红球
此时 A i ‾ = B i ∪ C i \overline {A_i}=B_i\cup C_i Ai=BiCi
设第 n n n次摸球时有 a n a_n an个白球, b n b_n bn个黑球, c n c_n cn个红球则 P ( A n ) = a n a n + b n + c n P(A_n)=\frac{a_n}{a_n+b_n+c_n} P(An)=an+bn+cnan

P ( A n + 1 ) = P ( A n ) P ( A n + 1 ∣ A n ) + P ( A n ‾ ) P ( A n + 1 ∣ A n ‾ ) = a n a n + b n + c n = P ( A n ) P(A_{n+1})=P(A_n)P(A_{n+1}|A_n)+P(\overline {A_n})P(A_{n+1}|\overline {A_n})=\frac{a_n}{a_n+b_n+c_n}=P(A_n) P(An+1)=P(An)P(An+1An)+P(An)P(An+1An)=an+bn+cnan=P(An)

放球模型:

n n n d e u t s c h {\color{red}deutsch} deutsch球放进 m ( m ≥ n ) m(m≥n) m(mn)个箱子里,求每个箱子至多有一个 d e u t s c h {\color{red}deutsch} deutsch球的概率

对于每个 d e u t s c h {\color{red}deutsch} deutsch球,他有 m m m个箱子可以呆,一共有 n n n d e u t s c h {\color{red}deutsch} deutsch球,因此
所有的安排方式有 m n m^n mn种,
考虑其中每个箱子至多放一个 d e u t s c h {\color{red}deutsch} deutsch球的种数:
一个 d e u t s c h {\color{red}deutsch} deutsch球被安排进一个箱子里,则这个箱子不能再被安排其他的 d e u t s c h {\color{red}deutsch} deutsch球,否则这两个球会🤺
那么每个 d e u t s c h {\color{red}deutsch} deutsch球的安排都会导致可用箱子数减少一个,那么安排数有: m × ( m − 1 ) × ( m − 2 ) × . . . × ( m − n + 1 ) = m ! ( m − n ) ! m\times(m-1)\times(m-2)\times ...\times (m-n+1)=\frac{m!}{(m-n)!} m×(m1)×(m2)×...×(mn+1)=(mn)!m!

那么概率为 m ! ( m − n ) ! m n \frac{\frac{m!}{(m-n)!}}{m^n} mn(mn)!m!

猴子排序模型(存疑):

1.给定一个长度为n的没有重复字符的字符串,猴子随便排序一次,求恰好按照字典序排好的概率?
由于每个字符只出现过一次,那么字符串满足严格偏序,正确的排列只有一种,而所有的排列方式有 A n n = n ! A_n^n=n! Ann=n!种,故按照字典序排好的顺序为 1 n ! \frac{1}{n!} n!1
2.如果字符串可以有重复字符:
设字符串中一共出现过 m m m个字符,第 i i i个字符出现过的次数为 n i n_i ni求猴子排序一次,按照字典序排好的概率?
首先考虑如果字符串中只有 m m m个不重复的字符,那么问题转化为1,
现在考虑第 i i i个字符出现过的次数为 n i n_i ni,这 n i n_i ni个字符的排序有 A n i n i = n i ! A_{n_i}^{n_i}=n_i! Anini=ni!种,根据乘法原理,所有正确的排列方法有: Π i = 1 m n i ! \Pi _{i=1}^m n_i! Πi=1mni!
字符总数有: n = ∑ i = 1 m n i n=\sum\limits_{i=1}^{m}n_i n=i=1mni所有排列数为 A n n = n ! A_{n}^n=n! Ann=n!
那么正确排列的概率为:
Π i = 1 m n i ! n ! \frac{\Pi _{i=1}^m n_i!}{n!} n!Πi=1mni!

几何概率

定义:

样本空间 Ω \Omega Ω为无限集
基本事件的概率都相同,但是单个基本事件计算不出概率(因为单个事件之于无限集就好比水滴之于大海)
事件 A A A占有无限集的比例就是 P ( A ) P(A) P(A)

计算:

比如当 Ω \Omega Ω表示 [ 0 , 1 ] [0,1] [0,1]
事件A:在 Ω \Omega Ω上任取一实数 x , x ∈ [ 1 , 1 2 ] x,x\in [1,\frac{1}{2}] x,x[1,21]
P ( A ) = [ 0 , 1 2 ] 的 长 度 Ω 的 长 度 = 1 2 P(A)=\frac{[0,\frac{1}{2}]的长度}{\Omega的长度}=\frac{1}{2} P(A)=Ω[0,21]=21

类似的可以推广到面积,体积,更高的维度上,但是有一个共同点就是,基本事件永远没有概率,
只有与样本空间处于同一维度的事件才能计算概率

常见模型:
面积比例

在这里插入图片描述
向正方形中随机撒米粒,求米粒落在正方形内切圆内的概率
样本空间为 Ω = { ( x , y ) ∣ − 1 ≤ x , y ≤ 1 } \Omega=\{(x,y)|-1≤x,y≤1\} Ω={(x,y)1x,y1}
事件米粒落在内切圆内为: A = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } A=\{(x,y)|x^2+y^2≤1\} A={(x,y)x2+y21}
P = ∣ A ∣ ∣ Ω ∣ = S 内 切 圆 S 总 = π 4 P=\frac{|A|}{|\Omega|}=\frac{S_{内切圆}}{S_总}=\frac{\pi}{4} P=ΩA=SS=4π

等候概率问题

屑码头只能容纳一艘船,甲乙两条船都可能在一天任何时候到达,甲停泊的事件为 a a a小时,乙停泊的事件为 b b b小时,求任意船到达时不用等待的概率

x , y x,y x,y分别为甲乙两船到达的时间 ( 0 ≤ x , y ≤ 24 ) (0≤x,y≤24) (0x,y24),则样本空间为
Ω = { ( x , y ) ∣ 0 ≤ x , y ≤ 24 } \Omega=\{(x,y)|0≤x,y≤24\} Ω={(x,y)0x,y24}
A 1 A_1 A1:甲船先到且乙不用等待, A 2 A_2 A2:乙船先到且甲不用等待
设事件 A A A:任意船到达都不用等待
A = A 1 ∪ A 2 A=A_1\cup A_2 A=A1A2
A 1 = { ( x , y ) ∣ x − y ≥ a , 0 ≤ x , y ≤ 24 } A_1=\{(x,y)|x-y≥a,0≤x,y≤24\} A1={(x,y)xya,0x,y24}
P ( A 1 ) = P(A_1)= P(A1)=
A 2 = { ( x , y ∣ y − x ≥ b , 0 ≤ x , y ≤ 24 ) } A_2=\{(x,y|y-x≥b,0≤x,y≤24)\} A2={(x,yyxb,0x,y24)}

P ( A ) = P ( A 1 ) + P ( A 2 ) = S 1 + S 2 S 总 P(A)=P(A_1)+P(A_2)=\frac{S_1+S_2}{S_总} P(A)=P(A1)+P(A2)=SS1+S2 = ( 24 − b ) 2 2 + ( 24 − a ) 2 2 2 4 2 =\frac{\frac{(24-b)^2}{2}+\frac{(24-a)^2}{2}}{24^2} =2422(24b)2+2(24a)2

在这里插入图片描述

条件概率:On2021.7.5

定义:

A , B A,B A,B是事件, 1 ≥ P ( A ) > 0 1≥P(A)>0 1P(A)>0,称 P ( B ∣ A ) = P ( B A ) P ( A ) P(B|A)=\frac{P(BA)}{P(A)} P(BA)=P(A)P(BA)为事件A在事件B发生的条件下发生的条件概率

计算:

1.古典条件概率:
P ( B ∣ A ) = B 在 A 中 的 基 本 事 件 个 数 A 中 的 基 本 事 件 个 数 P(B|A)=\frac{B在A中的基本事件个数}{A中的基本事件个数} P(BA)=ABA
2.几何条件概率(没有定论)

性质:继承概率的所有性质

比如由 P ( B ∪ C ) = P ( B ) + P ( C ) − P ( B C ) P(B\cup C)=P(B)+P(C)-P(BC) P(BC)=P(B)+P(C)P(BC)可以推出:

P ( B ∪ C ∣ A ) = P ( B ∣ A ) + P ( C ∣ A ) − P ( B C ∣ A ) P(B\cup C|A)=P(B|A)+P(C|A)-P(BC|A) P(BCA)=P(BA)+P(CA)P(BCA)

其他性质详见概率三大公式

概率三大公式

乘法公式

P ( A B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(AB)=P(A)P(B|A)=P(B)P(A|B) P(AB)=P(A)P(BA)=P(B)P(AB)

推广:

P ( A 1 A 2 A 3 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 A 3 . . A n − 1 ) P(A_1A_2A_3...A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2A_3..A_{n-1}) P(A1A2A3...An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1A2A3..An1)
要计算n个事件同时发生的概率,应该在前n-1个事件发生的基础上计算第n个事件发生的概率

递推公式:

P ( A 1 A 2 A 3 . . . A n ) = P ( A 1 A 2 A 3 . . . A n − 1 ) × P ( A n ∣ A 1 A 2 A 3 . . . A n − 1 ) P(A_1A_2A_3...A_n)=P(A_1A_2A_3...A_{n-1})\times P(A_n|A_1A_2A_3...A_{n-1}) P(A1A2A3...An)=P(A1A2A3...An1)×P(AnA1A2A3...An1)

意义:

为计算比较复杂的多步概率问题提供可靠的扶手

全概率公式On7.6

Ω \Omega Ω为随机试验的样本空间, A A A为随机事件, B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn为样本空间 Ω \Omega Ω的一个划分,则有:
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^nP(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)

这里的划分与离散数学学过的划分意义相同,即 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn满足:
1. ∀ i ∀ j , i ≠ j → B i ∩ B j = ∅ 1.\forall i\forall j,i≠j \rightarrow B_i\cap B_j=\varnothing 1.ij,i=jBiBj=任意两个子集不相交
2. ⋃ i = 1 n B i = Ω 2.\bigcup_{i=1}^nB_i=\Omega 2.i=1nBi=Ω所有子集并为 Ω \Omega Ω

全概率公式用人话解释: A A A Ω \Omega Ω上发生的概率等于 A A A Ω \Omega Ω各个小部分发生的概率总和
在这里插入图片描述
求A发生的概率就等于A在各个B中部分发生的概率和,venn图上的表示就是 P ( C 1 ) , P ( C 2 ) , . . . P ( C n ) P(C_1),P(C_2),...P(C_n) P(C1),P(C2),...P(Cn)之和

贝叶斯公式

Ω \Omega Ω为随机试验的样本空间, A A A为随机事件, B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn为样本空间 Ω \Omega Ω的一个划分,且 P ( A ) > 0 , ∀ i ∈ [ 1 , n ] P ( B i ) > 0 P(A)>0,\forall i\in[1,n]P(B_i)>0 P(A)>0,i[1,n]P(Bi)>0则有:
P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum\limits_{j=1}^nP(B_j)P(A|B_j)} P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)

翻译成人话:已经知道A发生了,那么发生在A上的 B i B_i Bi部分的概率等于 B i B_i Bi A A A中的部分占整个 A A A的比例
在这里插入图片描述

v e n n venn venn图中的解释是:
C i C_i Ci B i ∩ A B_i\cap A BiA也就是 B i B_i Bi落在A上的部分,则当已经知道A发生时,
B i B_i Bi发生的概率 = C i =C_i =Ci发生的概率 = C i =C_i =Ci C 1 , C 2 , . . . C n C_1,C_2,...C_n C1,C2,...Cn的比例
其他的与A没有交集的 B i B_i Bi不参与计算

性质:
A , B A,B A,B相互独立的充要条件:

1. P ( B ∣ A ) = P ( B ) 1.P(B|A)=P(B) 1.P(BA)=P(B)
2. P ( B ∣ A ) = P ( B ∣ A ‾ ) , 0 < P ( A ) < 1 2.P(B|A)=P(B|\overline A),0<P(A)<1 2.P(BA)=P(BA),0<P(A)<1

相互独立必不互不相容
A , B A,B A,B相互独立则 A , A ‾ , B , B ‾ A,\overline A,B,\overline B A,A,B,B都相互独立
从两个事件推广到n个事件的性质

1. 1. 1.这n个事件之中的任意 k k k个也都相互独立
2. 2. 2.这n个事件中的任意 k k k个换成对立事件后,这n个事件仍然相互独立
3. 3. 3.n个事件划分成任意k组形成k个事件,对每个组施加和差积逆等运算之后,这k个事件仍然互相独立

常见模型
后验概率

先验概率:试验前已知 B B B的概率 P ( B ) P(B) P(B)
后验概率:试验之后,观测到A发生了, P ( B ∣ A ) P(B|A) P(BA)就是后验概率
区别:
先验概率由因求果,比如

已知盒子里由a个红球,b个黑球,随便摸出一个球,是红球的概率?
P ( 摸 出 红 球 ) = a a + b P(摸出红球)=\frac{a}{a+b} P()=a+ba

后验概率由果求因,比如:

已知西电男女比例 4 : 1 4:1 4:1,并且 99 % 99\% 99%的男生不会穿裙子(昨天就看见了那 1 % 1\% 1%,还是两个), 50 % 50\% 50%的女生会穿裙子,从一大群西电er之中随便挑出一个来, 发现穿了裙子,那么这是个 ♂ ♂ 的概率为? \\{}
法一:由贝叶斯公式 P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum\limits_{j=1}^nP(B_j)P(A|B_j)} P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)
P ( 这 个 人 是 ♂ ∣ 这 个 人 穿 裙 子 ) = P ( 这 个 人 是 ♂ ) P ( 这 个 人 穿 裙 子 ∣ 这 个 人 是 ♂ ) P ( 这 个 人 是 ♂ ) P ( 这 个 人 穿 裙 子 ∣ 这 个 人 是 ♂ ) + P ( 这 个 人 是 ♀ ) P ( 这 个 人 穿 裙 子 ∣ 这 个 人 是 ♀ ) = 4 5 × 1 % 4 5 × 1 % + 1 5 × 50 % = 2 27 P(这个人是♂|这个人穿裙子)=\\ {}\\\frac{P(这个人是♂)P(这个人穿裙子|这个人是♂)}{P(这个人是♂)P(这个人穿裙子|这个人是♂)+P(这个人是♀)P(这个人穿裙子|这个人是♀)}\\{}\\{}=\frac{\frac{4}{5}\times 1\%}{\frac{4}{5}\times 1\%+\frac{1}{5}\times 50\%}\\=\frac{2}{27} P(穿)=P()P(穿)+P()P(穿)P()P(穿)=54×1%+51×50%54×1%=272
法二:设西电有 1000 1000 1000个人,其中800男200女,其中穿裙男有 800 × 1 % = 8 800\times 1\%=8 800×1%=8,不穿裙男有792,穿裙女与不穿裙女都是100人,那么穿裙子的人中:男:女=8:100,那么问题即为从穿裙子的108将中随便挑出一个人来,结果是个♂的概率?显然是 8 100 + 8 = 2 27 \frac{8}{100+8}=\frac{2}{27} 100+88=272
更常见的情形是:
工厂有 n n n个车间,第 i i i个车间的效率为 e f f i c i e n c y [ i ] efficiency[i] efficiency[i],次品率为 d e f e c t i v e _ r a t e [ i ] defective\_rate[i] defective_rate[i],则一段时间后取出个车间的产品放在一起,随便抽取一个产品,发现是次品,则该次品出自第 i i i个工厂的概率
设事件 A A A为该产品是次品, B i B_i Bi为该产品出在第 i i i个工厂
记所有工厂的总效率为 C o e f f i c i e n c y = ∑ i = 1 n e f f i c i e n c y [ i ] Coefficiency=\sum\limits_{i=1}^n efficiency[i] Coefficiency=i=1nefficiency[i],
P ( B i ) P(B_i) P(Bi)即表示第i个工厂的效率占总效率的比值
P ( B i ) = e f f i c i e n c y [ i ] C o e f f i c i e n c y = e f f i c i e n c y [ i ] ∑ i = 1 n e f f i c i e n c y [ i ] P(B_i)=\frac{efficiency[i]}{Coefficiency}=\frac{efficiency[i]}{\sum\limits_{i=1}^n efficiency[i]} P(Bi)=Coefficiencyefficiency[i]=i=1nefficiency[i]efficiency[i]
P ( A ∣ B i ) P(A|B_i) P(ABi)就表示第i个工厂的次品率 P ( A ∣ B i ) = d e f e c t i v e _ r a t e [ i ] P(A|B_i)=defective\_rate[i] P(ABi)=defective_rate[i]
\\{}
由贝叶斯公式 P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum\limits_{j=1}^nP(B_j)P(A|B_j)} P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)
将已知数据带入计算即可得到分母:
∑ j = 1 n P ( B j ) P ( A ∣ B j ) = ∑ j = 1 n e f f i c i e n c y [ j ] C o e f f i c i e n c y × d e f e c t i v e _ r a t e [ j ] \sum\limits_{j=1}^nP(B_j)P(A|B_j)=\sum\limits_{j=1}^n\frac{efficiency[j]}{Coefficiency}\times defective\_rate[j] j=1nP(Bj)P(ABj)=j=1nCoefficiencyefficiency[j]×defective_rate[j]
各个分子代值计算即得

事件独立性

定义:

设事件 A , B A,B A,B满足: P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0,若二者满足: P ( A ) P ( B ) = P ( A B ) P(A)P(B)=P(AB) P(A)P(B)=P(AB)则事件 A , B A,B A,B相互独立
两个事件相互独立意义: A A A的发生不会改变 B B B的概率

与互不相容区别:
互不相容是有A没B,有B没A
也就是一旦观测到A发生则B必不会发生
此种情况下A,B之一的发生必然影响另一方的概率
A,B必不互相独立 \\{}
类似的,包含关系中如果有 A ⊆ B A\subseteq B AB
此时A发生则B一定发生,B不发生则A一定不发生
,A,B显然也不互相独立

推广:n个事件的独立性
两两独立:

从n个事件中任意挑出两个不同事件 A i , A j A_i,A_j Ai,Aj,如果 P ( A i ) P ( A j ) = P ( A i A j ) P(A_i)P(A_j)=P(A_iA_j) P(Ai)P(Aj)=P(AiAj)则称这n个事件两两独立

翻译成人话:
某个事件的发生不影响其他事件的概率

n个事件互相独立:

如果这n个事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An满足:
∀ k ∈ [ 2 , n ] , P ( A i 1 A i 2 A i 3 . . . A i k ) = P ( A i 1 ) P ( A i 2 ) P ( A i 3 ) . . . P ( A i k ) \forall k\in[2,n],P(A_{i_1}A_{i_2}A_{i_3}...A_{i_k})=P(A_{i_1})P(A_{i_2})P(A_{i_3})...P(A_{i_k}) k[2,n],P(Ai1Ai2Ai3...Aik)=P(Ai1)P(Ai2)P(Ai3)...P(Aik)
则称这n个事件互相独立

翻译成人话:
某些事件的发生不影响其他事件的概率

特别的:当 n = 3 n=3 n=3 A , B , C A,B,C A,B,C三个事件互相独立的充要条件为:
{ P ( A B ) = P ( A ) P ( B ) P ( B C ) = P ( B ) P ( C ) P ( C A ) = P ( C ) P ( A ) P ( A B C ) = P ( A ) P ( B ) P ( C ) \begin{cases}P(AB)=P(A)P(B) \\ P(BC)=P(B)P(C) \\ P(CA)=P(C)P(A) \\ P(ABC)=P(A)P(B)P(C) \end{cases} P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(CA)=P(C)P(A)P(ABC)=P(A)P(B)P(C)
如果只满足前三个条件则这3个事件两两独立,再满足最后一个才是互相独立

习题1订正与思考On7.5,7.6

T一.3.事件关系以及集合关系

在这里插入图片描述

A , B , C A,B,C A,B,C为随机事件,则
A . A B ‾ = A ∪ B A.\overline{AB}=A\cup B A.AB=AB
B . A ∪ B = ( A B ‾ ) ∪ B B.A\cup B=(A\overline B)\cup B B.AB=(AB)B
C . A ∪ B ‾ ∩ C = A ‾   B ‾   C ‾ C.\overline {A\cup B}\cap C=\overline A\ \overline B\ \overline C C.ABC=A B C
D . ( A B ) ( A B ‾ ) = Ω D.(AB)(A\overline B)=\Omega D.(AB)(AB)=Ω

A . A B ‾ = A ∪ B A.\overline{AB}=A\cup B A.AB=AB
法一:
A B ‾ = Ω − A − B + A B , A ∪ B = A + B − A B \overline{AB}=\Omega-A-B+AB,A\cup B=A+B-AB AB=ΩAB+AB,AB=A+BAB
如果有 A B ‾ = A ∪ B \overline{AB}=A\cup B AB=AB则有 Ω = 2 ( A + B − A B ) \Omega=2(A+B-AB) Ω=2(A+BAB)显然错误
法二:
C = A ∩ B = A B C=A\cap B=AB C=AB=AB C ‾ = A ∩ B ‾ = 德 摩 根 律 A ‾ ∪ B ‾ ≠ A ∪ B \overline C=\overline{A\cap B}\overset{\underset{德摩根律}{}}{=}\overline A\cup \overline B ≠A\cup B C=AB=AB=AB

B . A ∪ B = ( A B ‾ ) ∪ B B.A\cup B=(A\overline B)\cup B B.AB=(AB)B
A B ‾ A\overline B AB v e n n venn venn图上的意义是:A不与B重叠的私自部分 A − C A-C AC
然后 ( A B ‾ ) ∪ B (A\overline B)\cup B (AB)B把A私自的部分与B取并集,得到的显然是 A ∪ B A\cup B AB
严格证明:
A ∪ B = A + B − A B A\cup B=A+B-AB AB=A+BAB
( A B ‾ ) ∪ B = A B ‾ + B − A B ‾ B = A B ‾ = A − A B A − A B + B − ∅ = A + B − A B (A\overline B)\cup B=A\overline B+B-A\overline BB\overset{\underset{A\overline B=A-AB}{}}{=}A-AB+B-\varnothing=A+B-AB (AB)B=AB+BABB=AB=AABAAB+B=A+BAB
因此 A ∪ B = ( A B ‾ ) ∪ B A\cup B=(A\overline B)\cup B AB=(AB)B

C . A ∪ B ‾ ∩ C = A ‾   B ‾   C ‾ C.\overline {A\cup B}\cap C=\overline A\ \overline B\ \overline C C.ABC=A B C
A ∪ B ‾ ∩ C = A ‾ ∩ B ‾ ∩ C = A ‾   B ‾   C \overline {A\cup B}\cap C=\overline A\cap\overline B\cap C=\overline A\ \overline B \ C ABC=ABC=A B C
显然 A ∪ B ‾ ∩ C = A ‾   B ‾   C ‾ \overline {A\cup B}\cap C=\overline A\ \overline B\ \overline C ABC=A B C错误
在这里插入图片描述
如图, A ∪ B ‾ ∩ C = A ‾   B ‾   C \overline {A\cup B}\cap C=\overline A\ \overline B \ C ABC=A B C表示的是灰色的部分
A ‾   B ‾   C ‾ \overline A\ \overline B\ \overline C A B C表示的是紫色的部分

D . ( A B ) ( A B ‾ ) = Ω D.(AB)(A\overline B)=\Omega D.(AB)(AB)=Ω
A B A B ‾ = B B ‾ A A = ∅ A A = ∅ ≠ Ω ABA\overline B=B\overline BAA=\varnothing AA=\varnothing≠\Omega ABAB=BBAA=AA==Ω

T一.9互不相容与相互独立的关系

如果事件 A , B A,B A,B同时出现的概率为 P ( A B ) = 0 P(AB)=0 P(AB)=0则A和B的关系?
A . A , B 互 不 相 容 A.A,B互不相容 A.A,B
B . A B 是 不 可 能 事 件 B.AB是不可能事件 B.AB
C . A B 未 必 是 不 可 能 事 件 C.AB未必是不可能事件 C.AB
D . P ( A ) = 0 或 者 P ( B ) = 0 D.P(A)=0或者P(B)=0 D.P(A)=0P(B)=0

我最初的选择是 A , B A,B A,B,yy的venn图是这样的:
在这里插入图片描述
但是答案是 C C C,错误的原因是思维局限在了古典概型上,举个几何概型上的反例:
Ω = [ 0 , 2 ] \Omega=[0,2] Ω=[0,2]
事件 A : Ω A:\Omega A:Ω上取一个实数 x , x x,x x,x落在 [ 0 , 1 ] [0,1] [0,1]
事件 B : Ω B:\Omega B:Ω上取一个实数 x , x x,x x,x落在 [ 1 , 2 ] [1,2] [1,2]
显然 P ( A ) = P ( B ) = 1 2 P(A)=P(B)=\frac{1}{2} P(A)=P(B)=21
事件 A B = A ∩ B AB=A\cap B AB=AB表示 A : Ω A:\Omega A:Ω上取一个实数 x , x = 1 x,x=1 x,x=1
显然 A B ≠ ∅ AB≠\varnothing AB=但是 P ( A B ) = 0 P(AB)=0 P(AB)=0(一个点之于一个无限区间来说是无穷小)
在这里插入图片描述
韦恩图表示为两个事件只有一个交点根据互不相容的定义: A ∩ B = ∅ A\cap B=\varnothing AB=
显然在反例中 A ∩ B = { P ( x , y ) } ≠ ∅ A\cap B=\{P(x,y)\}≠\varnothing AB={P(x,y)}=,A选项错误,B选项错误,C正确,D用最初 y y yy yy v e n n venn venn图就可以判定错误

T一.11概率减法公式与条件概率公式的应用

P ( A ) = 0.6 , P ( A ∪ B ) = 0.84 , P ( B ‾ ∣ A ) = 0.4 , P(A)=0.6,P(A\cup B)=0.84,P(\overline B|A)=0.4, P(A)=0.6,P(AB)=0.84,P(BA)=0.4, P ( B ) = P(B)= P(B)=

P ( B ‾ ∣ A ) = P ( B ‾ A ) P ( A ) = P ( A ) − P ( A B ) P ( A ) = 1 − P ( A B ) P ( A ) P(\overline B|A)=\frac{P(\overline BA)}{P(A)}=\frac{P(A)-P(AB)}{P(A)}=1-\frac{P(AB)}{P(A)} P(BA)=P(A)P(BA)=P(A)P(A)P(AB)=1P(A)P(AB)
带入已知条件得到:
P ( A B ) = 0.36 P(AB)=0.36 P(AB)=0.36
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)带入已知得到:
P ( B ) = P ( A ∪ B ) − P ( A ) + P ( A B ) = 0.6 P(B)=P(A\cup B)-P(A)+P(AB)=0.6 P(B)=P(AB)P(A)+P(AB)=0.6

T一.17条件概率公式变形

已知 0 < P ( B ) < 1 0<P(B)<1 0<P(B)<1 P ( A 1 ∪ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) P(A_1\cup A_2|B)=P(A_1|B)+P(A_2|B) P(A1A2B)=P(A1B)+P(A2B)则下列等式正确的是

A . P ( A 1 ∪ A 2 ∣ B ‾ ) = P ( A 1 ∣ B ‾ ) + P ( A 2 ∣ B ‾ ) A.P(A_1\cup A_2|\overline B)=P(A_1|\overline B)+P(A_2|\overline B) A.P(A1A2B)=P(A1B)+P(A2B)
B . P ( A 1 B ∪ A 2 B ) = P ( A 1 B ) + P ( A 2 B ) B.P(A_1B\cup A_2B)=P(A_1B)+P(A_2B) B.P(A1BA2B)=P(A1B)+P(A2B)
C . P ( A 1 ∪ A 2 ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) C.P(A_1\cup A_2)=P(A_1|B)+P(A_2|B) C.P(A1A2)=P(A1B)+P(A2B)
D . P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) D.P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2) D.P(B)=P(A1)P(BA1)+P(A2)P(BA2)

A . P ( A 1 ∪ A 2 ∣ B ‾ ) = P ( A 1 ∣ B ‾ ) + P ( A 2 ∣ B ‾ ) A.P(A_1\cup A_2|\overline B)=P(A_1|\overline B)+P(A_2|\overline B) A.P(A1A2B)=P(A1B)+P(A2B)
P ( A 1 ∪ A 2 ∣ B ‾ ) = P ( A 1 ∣ B ‾ ) + P ( A 2 ∣ B ‾ ) − P ( A 1 A 2 ∣ B ‾ ) P(A_1\cup A_2|\overline B)=P(A_1|\overline B)+P(A_2|\overline B)-P(A_1A_2|\overline B) P(A1A2B)=P(A1B)+P(A2B)P(A1A2B)
即证 P ( A 1 A 2 ∣ B ‾ ) = 0 P(A_1A_2|\overline B)=0 P(A1A2B)=0
P ( A 1 ∪ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) − P ( A 1 A 2 ∣ B ) P(A_1\cup A_2|B)=P(A_1|B)+P(A_2|B)-P(A_1A_2|B) P(A1A2B)=P(A1B)+P(A2B)P(A1A2B)
又已知 ( A 1 ∪ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) (A_1\cup A_2|B)=P(A_1|B)+P(A_2|B) (A1A2B)=P(A1B)+P(A2B)得到 P ( A 1 A 2 ∣ B ) = 0 P(A_1A_2|B)=0 P(A1A2B)=0
但是得不到 P ( A 1 A 2 ∣ B ‾ ) = 0 P(A_1A_2|\overline B)=0 P(A1A2B)=0,举个反例:
在这里插入图片描述
A 1 A 2 ⊆ B ‾ A_1A_2\subseteq \overline B A1A2B此时 P ( A 1 A 2 ∣ B ‾ ) = 0 P(A_1A_2|\overline B)=0 P(A1A2B)=0显然不为0
故A项错误

B . P ( A 1 B ∪ A 2 B ) = P ( A 1 B ) + P ( A 2 B ) B.P(A_1B\cup A_2B)=P(A_1B)+P(A_2B) B.P(A1BA2B)=P(A1B)+P(A2B)
P ( A 1 B ∪ A 2 B ) = P ( A 1 B ) + P ( A 2 B ) − P ( A 1 B A 2 B ) = P ( A 1 B ) + P ( A 2 B ) − P ( A 1 A 2 B ) P(A_1B\cup A_2B)=P(A_1B)+P(A_2B)-P(A_1BA_2B)=P(A_1B)+P(A_2B)-P(A_1A_2B) P(A1BA2B)=P(A1B)+P(A2B)P(A1BA2B)=P(A1B)+P(A2B)P(A1A2B)
即证 P ( A 1 A 2 B ) = 0 P(A_1A_2B)=0 P(A1A2B)=0显然由A项的分析已证得 P ( A 1 A 2 B ) = 0 P(A_1A_2B)=0 P(A1A2B)=0
故B项正确

C . P ( A 1 ∪ A 2 ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) C.P(A_1\cup A_2)=P(A_1|B)+P(A_2|B) C.P(A1A2)=P(A1B)+P(A2B)
P ( A 1 ∪ A 2 ) = P ( A 1 ) + P ( A 2 ) − P ( A 1 A 2 ) = P ( B ) P ( A 1 ∣ B ) + P ( B ) P ( A 2 ∣ B ) − P ( B ) P ( A 1 A 2 ∣ B ) = P ( B ) P ( A 1 ∣ B ) + P ( B ) P ( A 2 ∣ B ) = P ( B ) ( P ( A 1 ∣ B ) + P ( A 2 ∣ B ) ) < P ( A 1 ∣ B ) + P ( A 2 ∣ B ) P(A_1\cup A_2)=P(A_1)+P(A_2)-P(A_1A_2)\\=P(B)P(A_1|B)+P(B)P(A_2|B)-P(B)P(A_1A_2|B)\\=P(B)P(A_1|B)+P(B)P(A_2|B)\\=P(B)(P(A_1|B)+P(A_2|B))<P(A_1|B)+P(A_2|B) P(A1A2)=P(A1)+P(A2)P(A1A2)=P(B)P(A1B)+P(B)P(A2B)P(B)P(A1A2B)=P(B)P(A1B)+P(B)P(A2B)=P(B)(P(A1B)+P(A2B))<P(A1B)+P(A2B)
故C项错误,错因是全概率公式使用错误

D . P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) D.P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2) D.P(B)=P(A1)P(BA1)+P(A2)P(BA2)
很明显是想应用全概率公式
但是全概率公式要求 A 1 , A 2 A_1,A_2 A1,A2必须是全集 Ω \Omega Ω的一个划分,如果写成这样:
P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 1 ‾ ) P ( B ∣ A 2 ) P(B)=P(A_1)P(B|A_1)+P(\overline {A_1})P(B|A_2) P(B)=P(A1)P(BA1)+P(A1)P(BA2)则正确,
但是 A 1 , A 2 A_1,A_2 A1,A2不一定是对立事件,所以D错误

T一.22相互独立的充要条件

A , B , C A,B,C A,B,C三个事件两两独立,则 A , B , C A,B,C A,B,C相互独立的充要条件为:

A . A 与 B C 相 互 独 立 A.A与BC相互独立 A.ABC
B . A B 与 A ∪ C 相 互 独 立 B.AB与A\cup C相互独立 B.ABAC
C . A B 与 A C 相 互 独 立 C.AB与AC相互独立 C.ABAC
D . A ∪ B 与 A ∪ C 相 互 独 立 D.A\cup B与A\cup C相互独立 D.ABAC(存疑)

n = 3 n=3 n=3 A , B , C A,B,C A,B,C三个事件互相独立的充要条件为:
{ P ( A B ) = P ( A ) P ( B ) P ( B C ) = P ( B ) P ( C ) P ( C A ) = P ( C ) P ( A ) P ( A B C ) = P ( A ) P ( B ) P ( C ) \begin{cases}P(AB)=P(A)P(B) \\ P(BC)=P(B)P(C) \\ P(CA)=P(C)P(A) \\ P(ABC)=P(A)P(B)P(C) \end{cases} P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(CA)=P(C)P(A)P(ABC)=P(A)P(B)P(C)
如果只满足前三个条件则这3个事件两两独立,再满足最后一个才是互相独立
现在本题中已经满足三个时间两两独立的条件,则只需 P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)即可互相独立

A . A 与 B C 相 互 独 立 A.A与BC相互独立 A.ABC
P ( A B C ) = P ( A ( B C ) ) = P ( A ) P ( B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A(BC))=P(A)P(BC)=P(A)P(B)P(C) P(ABC)=P(A(BC))=P(A)P(BC)=P(A)P(B)P(C)
于是A,B,C相互独立,A选项正确

B . A B 与 A ∪ C 相 互 独 立 B.AB与A\cup C相互独立 B.ABAC
P ( A B ( A ∪ C ) ) = P ( A B A ∪ A B C ) = P ( A B ) + P ( A B C ) − P ( A B C ) = P ( A B ) P(AB(A\cup C))=P(ABA\cup ABC)=P(AB)+P(ABC)-P(ABC)=P(AB) P(AB(AC))=P(ABAABC)=P(AB)+P(ABC)P(ABC)=P(AB)
= P ( A B ) P ( A ∪ C ) =P(AB)P(A\cup C) =P(AB)P(AC)
因此又 P ( A B ) = P ( A ) P ( B ) > 0 P(AB)=P(A)P(B)>0 P(AB)=P(A)P(B)>0因此有 P ( A ∪ C ) = 1 P(A\cup C)=1 P(AC)=1
推导出的这个条件与证明相互独立性无关

C . A B 与 A C 相 互 独 立 C.AB与AC相互独立 C.ABAC
P ( A B C ) = P ( A B A C ) = P ( ( A B ) ( A C ) ) = P ( A B ) P ( A C ) = P ( A ) P ( B ) P ( A ) P ( C ) = P 2 ( A ) P ( B ) P ( C ) < P ( A ) P ( B ) P ( C ) P(ABC)=P(ABAC)=P((AB)(AC))=P(AB)P(AC)=P(A)P(B)P(A)P(C)=P^2(A)P(B)P(C)<P(A)P(B)P(C) P(ABC)=P(ABAC)=P((AB)(AC))=P(AB)P(AC)=P(A)P(B)P(A)P(C)=P2(A)P(B)P(C)<P(A)P(B)P(C)
因此C一定不能推出 A B C ABC ABC相互独立

D . A ∪ B 与 A ∪ C 相 互 独 立 D.A\cup B与A\cup C相互独立 D.ABAC
P ( ( A ∪ B ) ( A ∪ C ) ) = P ( A A ∪ A C ∪ A B ∪ B C ) = P ( A ∪ B C ) P((A\cup B)(A\cup C))=P(AA\cup AC\cup AB\cup BC)=P(A\cup BC) P((AB)(AC))=P(AAACABBC)=P(ABC)
P ( A ∪ B ) P ( A ∪ C ) = ( P ( A ) + P ( B ) − P ( A B ) ) ( P ( A ) + P ( C ) − P ( A C ) ) = P 2 ( A ) + P ( A ) P ( C ) P(A\cup B)P(A\cup C)=(P(A)+P(B)-P(AB))(P(A)+P(C)-P(AC))=P^2(A)+P(A)P(C) P(AB)P(AC)=(P(A)+P(B)P(AB))(P(A)+P(C)P(AC))=P2(A)+P(A)P(C)

T一.22相互独立的判定

设随机事件 A , B , C A,B,C A,B,C相互独立,且 P ( A ) , P ( C ) > 0 P(A),P(C)>0 P(A),P(C)>0则下列事件互相对立的是:
A . A ∪ B ‾ 与 C A.\overline{A\cup B}与C A.ABC
B . A C ‾ 与 C B.\overline{AC}与C B.ACC
C . A − B ‾ 与 C ‾ C.\overline{A-B}与\overline C C.ABC
D . A B ‾ 与 C ‾ D.\overline{AB}与\overline C D.ABC

T二.6猴子排序模型

A A C E H I M M T T S AACEHIMMTTS AACEHIMMTTS这11个字母随机地排成一行,
恰好组成 M A T H E M A T I C S MATHEMATICS MATHEMATICS的概率为:

T二.9

从6双不同的鞋子中任取4只,则:
(1)恰好有两只配成一双的概率
(2)至少有两只配成一双的概率

T二.12给定条件概率求交事件的概率范围

P ( A ) = 0.6 , P ( B ) = 0.7 P(A)=0.6,P(B)=0.7 P(A)=0.6,P(B)=0.7
P ( A B ) P(AB) P(AB)的范围与条件是?

T二.17求后验概率

袋子里有 m m m个白球 n n n个黑球,现在丢失1个球.
从兜里随便掏出两个发现都是白球,求丢失的求是黑球的概率

T二.18概率乘法公式

逐个抽取不放回检查 m m m个次品, n n n个正品,则第 i ( i ≤ m ) i(i≤m) i(im)个次品在第 k k k次检查时被检查到的概率?

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰球球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值