概率论基础

这篇博客详细介绍了概率论的基础知识,包括随机事件的概念、样本空间、随机变量、条件概率、独立性及其运算。从随机现象的定义到概率的公理化定义,再到全概率公式和贝叶斯公式,深入浅出地阐述了概率论的核心概念和计算方法。
摘要由CSDN通过智能技术生成

在这里插入图片描述

概率论基础

1. 随机事件

1.1. 概念

1.1.1. 随机现象

在一定的条件下,并不总是出现相同的结果的现象称为随机现象,如抛一枚硬币与掷一颗骰子。随机现象有两个特点:

  • 结果不止一个;
  • 哪一个结果出现,人们事先不知道。

只有一个结果的现象称为确定性现象

1.1.2. 样本空间

随机现象的一切可能基本结果组成的集合称为样本空间,即为 Ω = { ω } \Omega=\{\omega\} Ω={ ω},其中 ω \omega ω表示基本结果,又称为样本点。需要注意的是:

  • 样本空间中的元素可以是数,也可以不是数。
  • 样本空间至少有两个样本点,仅含两个样本点的样本空间是最简单的样本空间。
  • 从样本空间含有样本点的个数区分,样本空间可以分为有限与无限两类。另外,往往将样本点的个数为有限个或可列个的情况归为一类,称为离散样本空间。而将样本点的个数为不可列无限个的情况归为另一类,称为连续样本空间

1.1.3. 随机事件

随机现象的某些样本点组成的集合称为随机事件,简称事件,常用大写字母 A , B , C , ⋯ A,B,C,\cdots A,B,C,表示。要注意以下几点:

  • 任一事件 A A A是相应样本空间的一个子集。
  • 当子集 A A A中某个样本点出现了,就说事件 A A A发生了。
  • 事件可以用集合表示,也可以用明白无误的语言描述。
  • 由样本空间 Ω \Omega Ω中的单个元素组成的子集称为基本事件。而 Ω \Omega Ω称为必然事件,空间 ∅ \emptyset 称为不可能事件。

1.1.4. 随机变量

用来表示随机现象结果的变量称为随机变量,常用大写字母 X , Y , Z , ⋯ X,Y,Z,\cdots X,Y,Z,表示。很多事件都可用随机变量表示,表示时关键应写明随机变量的含义。

例如:掷一颗骰子,可能出现1,2,3,4,5,6诸点,若设置 X = X= X=“掷一颗骰子出现的点数”,则随机变量 X X X的可能取值为1,2,3,4,5,6,这时

  • 事件“出现3点”可用“ X = 3 X=3 X=3”表示。
  • 事件“出现点数超过3”可用“ X > 3 X>3 X>3”表示。
  • X ≤ 6 X\leq 6 X6”是必然事件 Ω \Omega Ω.
  • X = 7 X=7 X=7”是不可能事件 ∅ \emptyset .

1.1.5. 事件间的关系

一、包含关系

如果属于 A A A的样本点必属于 B B B,则称 A A A被包含在 B B B中,或称 B B B包含 A A A,记为 A ⊂ B A\subset B AB.用概率论的语言说:事件 A A A发生必然导致事件 B B B发生。

二、相等关系

如果事件 A A A与事件 B B B满足:属于 A A A的样本点必属于 B B B,而且属于 B B B的样本点必属于 A A A,即 A ⊂ B A\subset B AB B ⊂ A B\subset A BA,则称事件 A A A B B B相等,即为 A = B A=B A=B.

三、互不相容

如果事件 A A A与事件 B B B没有相同的样本点,则称 A A A B B B互不相容。

1.1.6. 事件间的运算

一、事件 A A A B B B的并

事件 A A A B B B的并是由事件 A A A B B B中所有样本点(相同的只计入一次)组成的新事件,或用概率论的语言说,事件 A A A B B B中至少有一个发生,即为 A ∪ B A\cup B AB.

二、事件 A A A B B B的交

事件 A A A B B B的交是由事件 A A A B B B中公共的样本点组成的新事件,或用概率论的语言说,事件 A A A B B B同时发生,即为 A ∩ B A\cap B AB.

三、事件 A A A B B B的差

事件 A A A B B B的差是由在事件 A A A中而不在 B B B中的样本点组成的新事件,或用概率论的语言说,事件 A A A发生而 B B B不发生,即为 A − B A-B AB.

四、对立事件

事件 A A A的对立事件,即为 A ‾ \overline{A} A,即由在 Ω \Omega Ω中而不在 A A A中的样本点组成的新事件,或用概率论的语言说, A A A不发生,即 A ‾ = Ω − A \overline{A}=\Omega-A A=ΩA.事件 A A A B B B互为对立事件的充要条件是: A ∩ B = ∅ A\cap B=\emptyset AB= A ∪ B = Ω A\cup B=\Omega AB=Ω.

五、事件的运算性质

1.交换律

A ∪ B = B ∪ A , A B = B A A\cup B=B\cup A,\quad AB=BA AB=BA,AB=BA

2.结合律

( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup (B\cup C) (AB)C=A(BC)
( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)

3.分配律
( A ∪ B ) ∩ C = A C ∪ B C (A\cup B)\cap C=AC\cup BC (AB)C=ACBC
( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A\cap B)\cup C=(A\cup C)\cap (B\cup C) (AB)C=(AC)(BC)

4.对偶律(德摩根公式)

A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline{A}\cap \overline{B} AB=AB
A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cap B}=\overline{A}\cup \overline{B} AB=AB

六、事件域

定义: Ω \Omega Ω为一个样本空间, F \mathscr{F} F Ω \Omega Ω的某些子集组成的集合类。如果 F \mathscr{F} F满足:

  • Ω ∈ F \Omega\in \mathscr{F} ΩF
  • A ∈ F A\in \mathscr{F} AF,则对立事件 A ‾ ∈ F \overline{A}\in\mathscr{F} AF
  • A n ∈ F , n =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值