1. 随机事件
1.1. 概念
1.1.1. 随机现象
在一定的条件下,并不总是出现相同的结果的现象称为随机现象,如抛一枚硬币与掷一颗骰子。随机现象有两个特点:
- 结果不止一个;
- 哪一个结果出现,人们事先不知道。
只有一个结果的现象称为确定性现象。
1.1.2. 样本空间
随机现象的一切可能基本结果组成的集合称为样本空间,即为 Ω = { ω } \Omega=\{\omega\} Ω={ ω},其中 ω \omega ω表示基本结果,又称为样本点。需要注意的是:
- 样本空间中的元素可以是数,也可以不是数。
- 样本空间至少有两个样本点,仅含两个样本点的样本空间是最简单的样本空间。
- 从样本空间含有样本点的个数区分,样本空间可以分为有限与无限两类。另外,往往将样本点的个数为有限个或可列个的情况归为一类,称为离散样本空间。而将样本点的个数为不可列无限个的情况归为另一类,称为连续样本空间。
1.1.3. 随机事件
随机现象的某些样本点组成的集合称为随机事件,简称事件,常用大写字母 A , B , C , ⋯ A,B,C,\cdots A,B,C,⋯表示。要注意以下几点:
- 任一事件 A A A是相应样本空间的一个子集。
- 当子集 A A A中某个样本点出现了,就说事件 A A A发生了。
- 事件可以用集合表示,也可以用明白无误的语言描述。
- 由样本空间 Ω \Omega Ω中的单个元素组成的子集称为基本事件。而 Ω \Omega Ω称为必然事件,空间 ∅ \emptyset ∅称为不可能事件。
1.1.4. 随机变量
用来表示随机现象结果的变量称为随机变量,常用大写字母 X , Y , Z , ⋯ X,Y,Z,\cdots X,Y,Z,⋯表示。很多事件都可用随机变量表示,表示时关键应写明随机变量的含义。
例如:掷一颗骰子,可能出现1,2,3,4,5,6诸点,若设置 X = X= X=“掷一颗骰子出现的点数”,则随机变量 X X X的可能取值为1,2,3,4,5,6,这时
- 事件“出现3点”可用“ X = 3 X=3 X=3”表示。
- 事件“出现点数超过3”可用“ X > 3 X>3 X>3”表示。
- “ X ≤ 6 X\leq 6 X≤6”是必然事件 Ω \Omega Ω.
- “ X = 7 X=7 X=7”是不可能事件 ∅ \emptyset ∅.
1.1.5. 事件间的关系
一、包含关系
如果属于 A A A的样本点必属于 B B B,则称 A A A被包含在 B B B中,或称 B B B包含 A A A,记为 A ⊂ B A\subset B A⊂B.用概率论的语言说:事件 A A A发生必然导致事件 B B B发生。
二、相等关系
如果事件 A A A与事件 B B B满足:属于 A A A的样本点必属于 B B B,而且属于 B B B的样本点必属于 A A A,即 A ⊂ B A\subset B A⊂B且 B ⊂ A B\subset A B⊂A,则称事件 A A A与 B B B相等,即为 A = B A=B A=B.
三、互不相容
如果事件 A A A与事件 B B B没有相同的样本点,则称 A A A与 B B B互不相容。
1.1.6. 事件间的运算
一、事件 A A A与 B B B的并
事件 A A A与 B B B的并是由事件 A A A与 B B B中所有样本点(相同的只计入一次)组成的新事件,或用概率论的语言说,事件 A A A与 B B B中至少有一个发生,即为 A ∪ B A\cup B A∪B.
二、事件 A A A与 B B B的交
事件 A A A与 B B B的交是由事件 A A A与 B B B中公共的样本点组成的新事件,或用概率论的语言说,事件 A A A与 B B B同时发生,即为 A ∩ B A\cap B A∩B.
三、事件 A A A与 B B B的差
事件 A A A与 B B B的差是由在事件 A A A中而不在 B B B中的样本点组成的新事件,或用概率论的语言说,事件 A A A发生而 B B B不发生,即为 A − B A-B A−B.
四、对立事件
事件 A A A的对立事件,即为 A ‾ \overline{A} A,即由在 Ω \Omega Ω中而不在 A A A中的样本点组成的新事件,或用概率论的语言说, A A A不发生,即 A ‾ = Ω − A \overline{A}=\Omega-A A=Ω−A.事件 A A A与 B B B互为对立事件的充要条件是: A ∩ B = ∅ A\cap B=\emptyset A∩B=∅且 A ∪ B = Ω A\cup B=\Omega A∪B=Ω.
五、事件的运算性质
1.交换律
A ∪ B = B ∪ A , A B = B A A\cup B=B\cup A,\quad AB=BA A∪B=B∪A,AB=BA
2.结合律
( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup (B\cup C) (A∪B)∪C=A∪(B∪C)
( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
3.分配律
( A ∪ B ) ∩ C = A C ∪ B C (A\cup B)\cap C=AC\cup BC (A∪B)∩C=AC∪BC
( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A\cap B)\cup C=(A\cup C)\cap (B\cup C) (A∩B)∪C=(A∪C)∩(B∪C)
4.对偶律(德摩根公式)
A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline{A}\cap \overline{B} A∪B=A∩B
A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cap B}=\overline{A}\cup \overline{B} A∩B=A∪B
六、事件域
定义: 设 Ω \Omega Ω为一个样本空间, F \mathscr{F} F为 Ω \Omega Ω的某些子集组成的集合类。如果 F \mathscr{F} F满足:
- Ω ∈ F \Omega\in \mathscr{F} Ω∈F,
- 若 A ∈ F A\in \mathscr{F} A∈F,则对立事件 A ‾ ∈ F \overline{A}\in\mathscr{F} A∈F,
- 若 A n ∈ F , n =