特征提取

方法

以前的方法

在这里插入图片描述

圆盘边缘粗定位

预处理

1、使用双边滤波
2、将B-Scan图像从 200 × 1024 200 \times 1024 200×1024变为 600 × 400 600 \times 400 600×400

视网膜色素上皮细胞(RPE)层分解

检测出ILM层和RPE层辅助分割

初始化的神经管开口(NCO)检测

p 0 = { ( x , y ) ∣ arg max ⁡ ( x , y ) ∈ R P E C ( x , y ) , x ∈ [ 1 4 w , 3 4 w ] , y ∈ [ h 1 , h 2 ] } p_0=\{ (x,y)|\argmax_{(x,y) \in RPE} C(x,y),x \in [\frac{1}{4}w,\frac{3}{4}w],y \in[h_1,h_2]\} p0={(x,y)(x,y)RPEargmaxC(x,y),x[41w,43w],y[h1,h2]}

p 0 p_0 p0:指的是在RPE边界的NCO候选区域(大概的区域)
C ( x , y ) C(x,y) C(x,y)代表的是给定点的曲线
w w w:指的是图像的宽
h 1 = m i n ( g ( x 1 ) , g ( x 2 ) ) , h 2 = m a x ( g ( x 1 ) , g ( x 2 ) ) h_1=min(g(x_1),g(x_2)),h_2=max(g(x_1),g(x_2)) h1=min(g(x1),g(x2)),h2=max(g(x1),g(x2))

p i = { ( x , y i )      i f ∑ p j ∈ N ( p i ) ∥ x − x j ∥ / n ⩽ k ∑ p j ∈ N ( p i ) x j / n , y i      e l s e p_i= \begin{cases} (x,y_i)~~~~if \sum_{p_j \in N(p_i)} \parallel x-x_j \parallel/n \leqslant k \\ \sum_{p_j \in N(p_i)} x_j/n,y_i~~~~else \end{cases} pi={(x,yi)    ifpjN(pi)xxj/nkpjN(pi)xj/n,yi    else

p i p_i pi:表示的是在投射图像的圆盘边缘对应于 p 0 p_0 p0列。
y i y_i yi:是B-scan的系列数
N ( p ) N(p) N(p):表示的是圆盘边缘点从第二个到倒数第二连续的B-scan定义一个临近和 n = 4 n=4 n=4代表的是临近的临近大小,然而常数k设置为5。

基于支持向量机(SVM)的块搜寻

支持向量机(SVM)

样本选择

特征抽取

纹理特征
局部二值模式(Local binary pattern,LBP)

1、局部二值模式特征的描述
原始的LBP算子定义为在 3 × 3 3 \times 3 3×3的窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,该像素点的位置标记为1,否则为0。这样, 3 × 3 3\times3 3×3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:
在这里插入图片描述
在这里插入图片描述

用公式表示就是:
L B P ( x c , y c ) = ∑ p = 0 P − 1 2 p s ( i p − i c ) LBP(x_c,y_c)=\sum_{p=0}^{P-1}2^ps(i_p-i_c) LBP(xc,yc)=p=0P12ps(ipic)

其中 ( x c , y c ) (x_c,y_c) (xc,yc)是中心像素, i c i_c ic是灰度值, i n i_n in是相邻像素的灰度值,s是一个符号函数:
s ( x ) = { 1      i f x ⩽ 0 0      e l s e s(x)= \begin{cases} 1~~~~if x \leqslant 0\\ 0~~~~else \end{cases} s(x)={1    ifx00    else
2、圆形LBP算子:
基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,将 3 × 3 3\times3 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的LBP算子允许在半径为R的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;

梯度直方图(Histogram of gradient,HOG)

简介
HOG特征即Histogram of oriented gradient,源于2005年一篇CVPR论文,使用HOG+SVM做行人检测,由于效果良好而被广泛应用。大体效果如下,具体使用HOG+SVM做行人检测时在讨论详细代码。

算法计算步骤概览:
1、图像预处理。伽马矫正(减少光度影响)和灰度化(也可以在RGB图上做,只不过对三通道颜色值计算,取梯度值最大的)。
2、计算图像像素点梯度值,得到梯度图(尺寸和原图同等大小)。
3、图像划分多个cell,统计cell内梯度直方向方图。
4、将 2 × 2 2 \times 2 2×2个cell联合成一个block,对每个block做块内梯度归一化。

1、图像预处理
1.1、gamma矫正和灰度化
作用
gamma矫正通常用于电视和监视器系统中重现摄像机拍摄的画面.在图像处理中也可用于调节图像的对比度,减少图像的光照不均和局部阴影。
原理
通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正:
gamma矫正公式: f ( x ) = x γ f(x)=x^{\gamma} f(x)=xγ即输出时输入的幂函数,指数为 γ \gamma γ
2、计算图像像素梯度图
我们需要同时计算图像的水平梯度图和垂直梯度图。
计算方法为

分割图像
因为梯度直方图是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的。
计算每个区块的方向梯度直方图

M ( x , y ) = I x 2 + I y 2 ( x , y ) = t a n − 1 I y I x ∈ [ 0 , 36 0 o ) o r ∈ [ 0 , 18 0 o ) M(x,y)=\sqrt{I_x^2+I_y^2}\\ (x,y)=tan^{-1}\frac{I_y}{I_x} \in [0,360^o) or \in [0,180^o) M(x,y)=Ix2+Iy2 (x,y)=tan1IxIy[0,360o)or[0,180o)

其中, I x I_x Ix I y I_y Iy代表水平和垂直方向上的梯度值, M ( x , y ) M(x,y) M(x,y)代表梯度的幅度值, ( x , y ) (x,y) (x,y)代表梯度的方向。

块搜寻

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值