零钱兑换-动态规划vs暴力递归

博客探讨了零钱兑换问题的解决方案,对比了暴力递归和动态规划两种方法。暴力递归虽然直观,但时间复杂度高,为O(k * n^k)。动态规划则通过状态转移方程降低时间复杂度,从基础案例开始计算,避免重复子问题,提高了效率。文章强调在使用动态规划时需明确状态、选择、基础案例和状态转移方程,并提供了填充dp数组的注意事项。
摘要由CSDN通过智能技术生成


给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3 
解释: 11 = 5 + 5 + 1
示例 2:

输入: coins = [2], amount = 3
输出: -1

说明:
你可以认为每种硬币的数量是无限的。

暴力递归

dp 函数的定义:当前的目标金额是 n,至少需要 dp(n) 个硬币凑出该金额。
dp(n)
= 0, n=0
=-1, n<0
= min{dp(n-coin) +1| coin属于coins}, n>0

时间复杂度分析:⼦问题总数 x 每个⼦问题的时间。
⼦问题总数为递归树节点个数,这个⽐较难看出来,是 O(n^k),总之是指数级别的。每个⼦问题中含有⼀个 for 循环,复杂度为 O(k)。所以总时间复杂度为 O(k * n^k),指数级别

class Solution {
    public int coinChange(int[] coins, int amount) {
        return dp(coins, amount);
    }
    public int dp(int[] coins, int n){
        if(n==0) return 0;
        if(n< 0) return -1;

        //res记录 选择硬币的方案中 较小的值   
        int res= Integer.MA
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值