给定一个二叉树,根节点为第1层,深度为 1。在其第 d
层追加一行值为 v
的节点。
添加规则:给定一个深度值 d
(正整数),针对深度为 d-1
层的每一非空节点 N
,为 N
创建两个值为 v
的左子树和右子树。
将 N
原先的左子树,连接为新节点 v
的左子树;将 N
原先的右子树,连接为新节点 v
的右子树。
如果 d
的值为 1,深度 d - 1 不存在,则创建一个新的根节点 v
,原先的整棵树将作为 v
的左子树。
示例 1:
输入: 二叉树如下所示: 4 / \ 2 6 / \ / 3 1 5 v = 1 d = 2 输出: 4 / \ 1 1 / \ 2 6 / \ / 3 1 5
示例 2:
输入: 二叉树如下所示: 4 / 2 / \ 3 1 v = 1 d = 3 输出: 4 / 2 / \ 1 1 / \ 3 1
注意:
- 输入的深度值 d 的范围是:[1,二叉树最大深度 + 1]。
- 输入的二叉树至少有一个节点。
思路:
通过前序遍历,每次先访问当前节点,然后判断当前节点的深度,如果深度等于1,则表明这是待插入的节点,有两种情况:
1:如果当前是根节点(表明只有原二叉树只有一层),则生成值为v的节点tmp,把tmp的左子节点赋给原根节点。
2:如果当前不是根节点,则生成值为v的节点tmp,把当前节点的父节点的左节点或右节点赋给tmp(条件判断是左节点还是右节点),再把tmp节点的左或右节点赋值给root。
否则递归调用左右子树,并把深度-1。
如果按照上述思路写出代码,很有可能会不过,因为这道题的边界条件控制很特殊,我们不能再用如下的条件去控制边界条件:
if (!root) {
return;
}
因为存在这样的情况:
1 / \ 2 3 / 4 v = 5 d = 4
如果按照之前的边界控制,返回的是原二叉树,而正确答案是如下:
1 / \ 2 3 / 4 / \ 5 5
所以我们的条件控制要改为:如果当前节点为空且当前节点的深度大于1,则表明当前节点不是深度为d的层,因为当前节点都为空了还不满足深度为1,证明不是当前节点,直接返回。
if(!root && d>1){
return;
}
代码如下:
void addOneRowCore(TreeNode* root, int v, int d,TreeNode* parent, TreeNode* &true_root) {
if(!root && d>1){
return;
}
if (d == 1) {
//d==1的情况(原树只有一层)
if (parent == root) {
TreeNode* tmp = new TreeNode(v);
tmp->left=root;
true_root = tmp;
}
//d!=1
else {
if (parent->left == root) {
TreeNode* tmp = new TreeNode(v);
parent->left=tmp;
tmp->left = root;
}
else if (parent->right == root) {
TreeNode* tmp = new TreeNode(v);
parent->right=tmp;
tmp->right = root;
}
}
return;
}
addOneRowCore(root->left, v, d - 1,root, true_root);
addOneRowCore(root->right, v, d - 1,root, true_root);
}
TreeNode* addOneRow(TreeNode* root, int v, int d) {
if (!root) {
return nullptr;
}
TreeNode* true_root = root;
addOneRowCore(root, v, d, root, true_root);
return true_root;
}