你和你的朋友,两个人一起玩 Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。你作为先手。
你们是聪明人,每一步都是最优解。 编写一个函数,来判断你是否可以在给定石头数量的情况下赢得游戏。
示例:
输入: 4
输出: false
解释: 如果堆中有 4 块石头,那么你永远不会赢得比赛;
因为无论你拿走 1 块、2 块 还是 3 块石头,最后一块石头总是会被你的朋友拿走。
思路:这道题就是找规律,先给结论:如果这个数能被4整除,那么一定输。
原因:如果只剩1,2,3个石头,那么你一定会赢;如果只剩4个,那么无论怎么选,一定会剩下石头,而剩下的石头一定会被对手一次拿完,所以你一定输;如果剩5-7个,那么你只要保证取完剩下4个石头,那么对手一定输;同理,如果剩余8个石头,那么无论你怎么拿,一定会剩下5-7个,那么重复上面的情况,你一定输,以此类推,有点像数学推导式。
所以可以推出来,如果每次最多可拿1-n个石头,那么如果这个数能被(n+1)整除,那么一定输。
参考代码:
class Solution {
public:
bool canWinNim(int n) {
return (n%4)==0?false:true;
}
};