交叉熵在机器学习中的使用,透彻理解交叉熵以及tf.nn.softmax_cross_entropy_with_logits的用法

关于交叉熵在loss函数中使用的理解
交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记录下来,以便日后查阅。

信息论
交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

1 信息量
首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设XX是一个离散型随机变量,其取值集合为χχ,概率分布函数p(x)=Pr(X=x),x∈χp(x)=Pr(X=x),x∈χ,则定义事件X=x0X=x0的信息量为:

I(x0)=−log(p(x0))
I(x0)=−log(p(x0))

由于是概率所以p(x0)p(x0)的取值范围是[0,1][0,1],绘制为图形如下:
                    è¿éåå¾çæè¿°

2 熵

考虑另一个问题,对于某个事件,有nn种可能性,每一种可能性都有一个概率p(xi)p(xi)
这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:

                                  

其中n代表所有的n种可能性,所以上面的问题结果就是



然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式: 

        
     

3 相对熵(KL散度)
相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

维基百科对相对熵的定义

In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q.

即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。

KL散度的计算公式:
                     

4 交叉熵
对式3.1变形可以得到:
                  
等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:
                  
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即 ,由于KL散度中的前一部分−H(y)−H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

机器学习中交叉熵的应用
1 为什么要用交叉熵做loss函数?
在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,比如:

              

2 交叉熵在单分类问题中的使用
这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单分类问题上基本是标配的方法

         

上式为一张样本的loss计算方法。式2.1中n代表着n种类别。
举例说明,比如有如下样本

                 

对应一个batch的loss就是:

                   

3 交叉熵在多分类问题中的使用

这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单分类问题的标签不同,多分类的标签是n-hot。
比如下面这张样本图,即有青蛙,又有老鼠,所以是一个多分类问题

                            

对应的标签和预测值:

值得注意的是,这里的Pred不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Pred值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。

同样的,交叉熵的计算也可以简化,即
                              
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:

             
                        
单张样本的loss即为:

                       
每一个batch的loss就是:
                 
式中m为当前batch中的样本量,n为类别数。

 

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
除去name参数用以指定该操作的name,与方法有关的一共两个参数:
第一个参数logits就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

softmax的公式是:

                  

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明

第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:

其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

                      

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!
代码如下:

import tensorflow as tf
# tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
# 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],
# 单样本的话,大小就是num_classes
# 第二个参数labels:实际的标签,大小同上
# tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)执行流程大概分为两步:
# 第一步是先对网络最后一层的输出做一个softmax,
# 第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵
logits=tf.constant([[1.0,2.0,3.0],
                    [1.0,2.0,3.0],
                    [1.0,2.0,3.0]])

y=tf.nn.softmax(logits)
# 真实的标签
y_=tf.constant([[0.0,0.0,1.0],
                [0.0,0.0,1.0],
                [0.0,0.0,1.0]])
# 交叉熵
cross_entropy=-tf.reduce_sum(y_*tf.log(y))
# 
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=logits))
with tf.Session() as sess:
    init=tf.global_variables_initializer()
    sess.run(init)
    print("每一类的预测的概率:")
    print(sess.run(y))
    print("交叉熵:")
    print(sess.run(cross_entropy))
    print(sess.run(cross_entropy2))
    cross_entropy = y_ * tf.log(y)
    print("cross_entropy y:\n", sess.run(cross_entropy))
    red1 = -tf.reduce_sum(cross_entropy, axis=1)
    print("cross_entropy_red1 y:\n", sess.run(red1))
    test = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_)
    print("softmax_cross_entropy_with_logits:\n", sess.run(test))

结果如下:

 

其它参考

参考博客:https://blog.csdn.net/tsyccnh/article/details/79163834

https://blog.csdn.net/rtygbwwwerr/article/details/50778098

https://blog.csdn.net/mao_xiao_feng/article/details/53382790

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值