python在一个画布上画多个子图

matplotlib 是可以组合许多的小图, 放在一张大图里面显示的. 使用到的方法叫作 subplot.

均匀画图

使用import导入matplotlib.pyplot模块, 并简写成plt. 使用plt.figure创建一个图像窗口.

import matplotlib.pyplot as plt

plt.figure()

使用plt.subplot来创建小图. plt.subplot(2,2,1)表示将整个图像窗口分为2行2列, 当前位置为1. 使用plt.plot([0,1],[0,1])在第1个位置创建一个小图.

plt.subplot(2,2,1)
plt.plot([0,1],[0,1])

plt.subplot(2,2,2)表示将整个图像窗口分为2行2列, 当前位置为2. 使用plt.plot([0,1],[0,2])在第2个位置创建一个小图.

plt.subplot(2,2,2)
plt.plot([0,1],[0,2])

plt.subplot(2,2,3)表示将整个图像窗口分为2行2列,当前位置为3. plt.subplot(2,2,3)可以简写成plt.subplot(223), matplotlib同样可以识别. 使用plt.plot([0,1],[0,3])在第3个位置创建一个小图.

plt.subplot(223)
plt.plot([0,1],[0,3])

plt.subplot(224)表示将整个图像窗口分为2行2列, 当前位置为4. 使用plt.plot([0,1],[0,4])在第4个位置创建一个小图.

plt.subplot(224)
plt.plot([0,1],[0,4])

plt.show()  # 展示

 

 

 

不均匀画图

如果希望展示的小图的大小不相同, 应该怎么做呢? 以上面的4个小图为例, 如果把第1个小图放到第一行, 而剩下的3个小图都放到第二行.

使用plt.subplot(2,1,1)将整个图像窗口分为2行1列, 当前位置为1. 使用plt.plot([0,1],[0,1])在第1个位置创建一个小图.

plt.subplot(2,1,1)
plt.plot([0,1],[0,1])

使用plt.subplot(2,3,4)将整个图像窗口分为2行3列, 当前位置为4. 使用plt.plot([0,1],[0,2])在第4个位置创建一个小图.

plt.subplot(2,3,4)
plt.plot([0,1],[0,2])

这里需要解释一下为什么第4个位置放第2个小图. 上一步中使用plt.subplot(2,1,1)将整个图像窗口分为2行1列, 第1个小图占用了第1个位置, 也就是整个第1行. 这一步中使用plt.subplot(2,3,4)将整个图像窗口分为2行3列, 于是整个图像窗口的第1行就变成了3列, 也就是成了3个位置, 于是第2行的第1个位置是整个图像窗口的第4个位置.

使用plt.subplot(235)将整个图像窗口分为2行3列,当前位置为5. 使用plt.plot([0,1],[0,3])在第5个位置创建一个小图. 同上, 再创建plt.subplot(236).

plt.subplot(235)
plt.plot([0,1],[0,3])

plt.subplot(236)
plt.plot([0,1],[0,4])

plt.show()  # 展示

完整代码

plt.figure()
plt.subplot(2,1,1)
plt.plot([0,1],[0,1])

plt.subplot(2,3,4)
plt.plot([0,1],[0,2])

plt.subplot(235)
plt.plot([0,1],[0,3])

plt.subplot(236)
plt.plot([0,1],[0,4])

plt.show()  # 展示

结果如下

 

  • 10
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
### 回答1: Python中可以使用Matplotlib等可视化库在一个画布上创建三个子图。具体实现步骤如下: 1.导入Matplotlib库和其他必要的库 ```python import matplotlib.pyplot as plt import numpy as np ``` 2.创建画布和三个子图对象 ```python fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(12, 4)) ``` 其中,fig代表整个画布的对象,(ax1, ax2, ax3)表示创建了三个子图对象,nrows和ncols表示在该画布上要创建的行数和列数,figsize指定了画布的大小。 3.在子图对象上分别添加形和标签 ```python # 在ax1中添加折线 x = np.linspace(0, 1, 100) y = x**2 ax1.plot(x, y, label='line plot') ax1.legend() # 在ax2中添加散点 x = np.random.randn(100) y = np.random.randn(100) ax2.scatter(x, y, label='scatter plot') ax2.legend() # 在ax3中添加柱状 x = ['A', 'B', 'C'] y = [3, 5, 2] ax3.bar(x, y, label='bar plot') ax3.legend() ``` 其中,ax1、ax2、ax3分别表示三个子图对象,在每个子图对象上,可以使用plot()函数添加折线,scatter()函数添加散点,bar()函数添加柱状。通过label参数可以设置每个子图对象上的形标签,然后通过legend()方法添加例。 4.显示绘制好的形 ```python plt.show() ``` 此时,就可以在一个画布上创建三个子图并显示出来了。 ### 回答2: Python是一种功能强大的编程语言,因其易读、易学和优雅简洁的代码而备受推崇。在绘制表时,Python中最广泛使用的库之一是Matplotlib。Matplotlib允许您使用Python生成各种静态和动态表。在Matplotlib中,使用plt.subplot()函数可以在同一个画布上创建多个子图,下面是如何用Python一个画布上创建三个子图的步骤: 1. 导入必要的库 首先,需要导入必要的库,包括matplotlib和numpy,以及可选的pandas和seaborn库,这些库通常用于数据分析和可视化。 ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns ``` 2. 创建画布 使用plt.subplots()函数创建一个新的画布,并设置子图的个数和排列方式。在本例中,我们将创建一个3x1的网格,即3个子图,1行和3列。 ```python fig, axs = plt.subplots(3, 1, figsize=(10, 10)) ``` 3. 绘制子图 创建子图后,我们可以使用子图对象axs来绘制任何类型的表。此处假设需要绘制三个不同的表,分别是折线、散点和条形。 ```python # 第一个子图:折线 x = np.linspace(0, 10, 50) y = np.sin(x) axs[0].plot(x, y) # 第二个子图:散点 x = np.random.randn(50) y = np.random.randn(50) axs[1].scatter(x, y) # 第三个子图:条形 data = {'apples': 10, 'oranges': 15, 'pears': 5, 'bananas': 20} df = pd.DataFrame.from_dict(data, orient='index', columns=['count']) axs[2].bar(df.index, df['count']) ``` 4. 添加表标题和标注 为了提高表的可读性,可以添加标题和标注,来描述其内容和含义。 ```python axs[0].set_title('sin(x)') axs[1].set_title('random scatter') axs[2].set_title('fruit counts') ``` 5. 显示表 最后一步是显示表。使用plt.show()函数来打开表窗口,并在屏幕上显示出来。 ```python plt.show() ``` 以上是创建三个子图的基本步骤。由于Python的Matplotlib库提供了丰富的选择,可以生成自己想要的各种示例表,如热力、直方和轮廓等,几乎可以处理任何类型的数据可视化需求。因此,Python在数据分析和可视化方面具有很大的优势,也是数据科学家们经常使用的编程语言之一。 ### 回答3: Python是一种高级编程语言,常用于计算科学和数据分析。它也是一个非常强大的绘工具,可以在一个画布上创建多个子图来展示不同的数据。 首先,我们需要导入Matplotlib库,这是Python最常用的绘库之一。通过Matplotlib库,我们可以轻松地创建三个子图。 接下来,我们创建一个画布,并使用子图函数将其分成三个部分。Matplotlib中有许多不同的子图函数可供选择,但最常用的是subplot函数,它可以将画布分为多个网格,并在每个网格中绘。 下面是一个简单的Python代码段,用于创建一个画布和三个子图: ``` import matplotlib.pyplot as plt # 创建一个画布,大小为10X10 fig = plt.figure(figsize=(10, 10)) # 创建第一个子图,分成1行3列,位于第一列 ax1 = fig.add_subplot(1, 3, 1) # 创建第二个子图,分成1行3列,位于第二列 ax2 = fig.add_subplot(1, 3, 2) # 创建第三个子图,分成1行3列,位于第三列 ax3 = fig.add_subplot(1, 3, 3) # 在每个子图中添加数据 ax1.plot([1,2,3,4]) ax2.scatter([1,2,3],[4,5,6]) ax3.bar([1,2,3,4],[1,4,2,3]) # 添加子图标题 ax1.set_title('Line Plot') ax2.set_title('Scatter Plot') ax3.set_title('Bar Plot') # 显示形 plt.show() ``` 在这个代码段中,我们先创建了一个大小为10x10的画布,然后使用add_subplot函数将它分成三部分。我们还在每个子图中添加了不同类型的数据(线、散点和条形),并为每个子图添加了标题。 最后,我们使用show函数显示形。运行这段代码,就可以在一个画布上创建三个子图了。 总之,Python的Matplotlib库是一个强大的绘工具,可以轻松地在一个画布上创建多个子图来展示不同类型的数据。需要注意的是,不同类型的数据需要使用相应的绘函数。通过学习和掌握Matplotlib库的基本用法,我们可以快速绘制出美观、直观、易于理解的表。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

中小学生

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值