K-means算法算是个著名的聚类算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手。
总结来说,这个算法的步骤如下:
1.随机选取样本中的K个点作为聚类中心
2.计算所有样本到各个聚类中心的距离,将每个样本规划在最近的聚类中
3.计算每个聚类中所有样本的中心,并将新的中心代替原来的中心
4.检查新老聚类中心的距离,如果距离超过规定的阈值,则重复2-4,直到小于阈值
kmeans是非常经典的聚类算法,至今也还保留着较强的生命力,图像处理中经常用到kmeans算法或者其改进算法进行图像分割操作,在数据挖掘中kmeans经常用来做数据预处理。opencv中提供了完整的kmeans算法,其函数原型为:
double kmeans( InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts, int flags, OutputArray centers = noArray() );
其中data表示用于聚类的数据,是N维的数组类型(Mat型),必须浮点型;
K表示需要聚类的类别数;
bestLabels聚类后的标签数组,Mat型;
criteria迭代收敛准则(MAX_ITER最大迭代次数,EPS最高精度);
attemps表示尝试的次数,防止陷入局部最优;
flags 表示聚类中心的选取方式(KMEANS_RANDOM_CENTERS 随机选取,KMEANS_PP_CENTERS使用Arthur提供的算法,KMEANS_USE_INITIAL_LABELS使用初始标签);
centers 表示聚类后的类别中心。
关于kmeans的理论可以参考:基本Kmeans算法介绍及其实现
补充:
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小
1. 算法基本步骤
(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(4) 计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)。
2.OpenCV 函数使用
int cvKMeans2(const CvArr* samples, //输入样本的浮点矩阵,每个样本一行
int nclusters,//所给定的聚类数目
CvArr* labels, //输出整数向量:每个样本对应的类别标识
CvTermCriteria termcrit, //指定聚类的最大迭代次数和/或精度(两次迭代引起的聚类中心的移动距离)
int attempts=1, CvRNG* rng=0,int flags=0,
CvArr* centers=0,double* compactness=0);
http://blog.csdn.net/xizhibei/article/details/7407873
http://blog.csdn.net/owen7500/article/details/51604906