POJ 2411 Mondriaan's Dream (状压DP)

题意:用宽为2,高为1的小矩形,拼成一个h*w的大矩形,问有多少种拼法。

开始想的时候,从下往上不断铺,考虑每一行的铺的方式,对于每一行的第i个格,如果被横放的矩形覆盖的话,状态为1,如果被竖放的矩形覆盖的话,状态为0。想了一种状态转移,但是复杂度太大了。然后想到最后结果是最后一行全铺满的情况。。如果不铺满又怎样。。那么让每一行的第i个格,如果被覆盖就为1,不被覆盖就为0,然后方程就出来了。


思路:状态表示如上述。设dp[i][S] 为第i行状态为S,前i-1行全铺满的方式数。

考虑第i行和第i-1行的关系:如果第i行第j个格为0,那么第i-1行第j个格必须是1;如果第i行第j个格为1,第i-1行第j个格可以是1也可是0,因为如果第i行第j个格是被竖放的矩形覆盖的话,那么其下为0,反之为1 。但因为每一行横放矩形占有两个格,所以第i行每一段1下面必须有偶数或0个1。

状态转移方程:dp[i][S] += dp[i-1][S'] (S'满足上述关系)


我的代码:

#include<cstdio>
#include<iostream>
#include<cstring>

using namespace std;
typedef __int64 LL;
const LL maxn = 12;

LL dp[maxn][1<<maxn];
int h,w;

bool check(int s,int t){
    if(((s | t) + 1) >> w != 1) return false;
    int tmp = s & t,cnt = 0;
    while(tmp){
        if(tmp & 1) cnt++;
        else{
            if(cnt % 2 == 1) return false;
            cnt = 0;
        }
        tmp >>= 1;
    }
    if(cnt % 2 == 1) return false;
    return true;
}

void solve(){
    int Ed = 1 << w;
    for(int j = 0 ;j < Ed; j++){
        if(check(j,Ed - 1)) dp[0][j] = 1;
        //cout<<dp[0][j]<<" ";
    }
    //cout<<endl;
    for(int i=1;i<h;i++){
        for(int j=0;j<Ed;j++){
            for(int k=0;k<Ed;k++){
                if(check(j,k)) {
                    dp[i][j] += dp[i-1][k];
                    //cout<<j<<" and "<<k<<endl;
                }
            }
            //cout<<dp[i][j]<<" ";
        }
        //cout<<endl;
    }
    printf("%I64d\n",dp[h-1][Ed-1]);
}

int main(){
    while(~scanf("%d%d",&h,&w)){
        if(h + w == 0) break;
        if(h < w) swap(h,w);
        memset(dp,0,sizeof(dp));
        solve();
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值