numpy中的convolve的理解

函数
numpy.convolve(a, v, mode=‘full’),这是numpy函数中的卷积函数库
  参数:
    a:(N,)输入的一维数组
    b:(M,)输入的第二个一维数组
    mode:{‘full’, ‘valid’, ‘same’}参数可选
      ‘full’ 默认值,返回每一个卷积值,长度是N+M-1,在卷积的边缘处,信号不重叠,存在边际效应。
      ‘same’ 返回的数组长度为max(M, N),边际效应依旧存在。
      ‘valid’  返回的数组长度为max(M,N)-min(M,N)+1,此时返回的是完全重叠的点。边缘的点无效。

直观理解
数字输入的是离散信号,如下图。
已知x[0] = a,x[1]=b,x[2]=c

è¿éåå¾çæè¿°

已知y[0]=i,y[1]=j,y[2]=k

è¿éåå¾çæè¿°

下面演示x[n]*y[n]过程
第一步,x[n]乘以y[0]并平移到位置0:

è¿éåå¾çæè¿°

第二步,x[n]乘以y[1]并平移到位置1:

è¿éåå¾çæè¿°

第三步,x[n]乘以y[2]并平移到位置2:

è¿éåå¾çæè¿°

最后,把上面三个图叠加,就得到了x[n] * y[n]:

è¿éåå¾çæè¿°


公式及代码
公式:
代码:
由上面的公式可以直接得到下面的数组

>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([ 0. ,  1. ,  2.5,  4. ,  1.5])


数组中的5个点分别最后一张图片中的五个值

>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([ 1. ,  2.5,  4. ])


三个值分别对应图片中的(1、2、3)三个下标的值

>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([ 2.5])


对应图片坐标为2的值

参考:numpy.convolve¶
知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值