np.convolve(x,h, mode=‘##‘)的使用

numpy的convolve函数用于进行卷积操作,参数mode有三种选择:full(默认),same,valid。full模式返回所有卷积值,可能存在边缘效应;same模式确保输出与输入长度相同,仍存在边缘效应;valid模式仅计算完全重叠部分,无边缘效应。示例展示了不同模式下的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用法:

np.convolve(a,v,mode) a代表卷积数据,v卷积核大小,mode卷积方式,mode卷积方式有三种 same full valid mode可能的三种取值情况:

  • full’ 默认值,返回每一个卷积值,长度是N+M-1,在卷积的边缘处,信号与卷积核不能完全重叠计算,会存在边缘数据无法计算到的情况,存在边际效应。
  • ‘same’ 返回的数组长度为max(M, N),是的输入数据与输出数据保持一致,也叫做等长卷积,边际效应依旧存在,但是便于计算。
  • ‘valid’  返回的数组长度为max(M,N)-min(M,N)+1,只计算信号(输入数据)与卷积核数据完全重叠的窗口数据,得到的数据都是完全重叠的点,边际效应不存在。

三种计算方式:

full:


import numpy as np
h=[4,3,2]
x=[1,2,3,5]
result_full=np.convolve(h,x,mode='full')
print(result_full)

结果:

[ 4 11 20 33 21 10]

计算方式:
首先需要将h进行reverse翻转。

#mode=full
2,3,4
    1,23,5
  = 4   (存在边际效益)

2,3,4
  1,23,5
= 3+8
=11   (存在边际效益)

2, 3, 4
1, 23, 5
= 2+6+12
=20   


	2, 3, 4
1,  23, 5
= 4+9+20
=33

		2, 3, 4
1,  23, 5
= 6+15
=21   (存在边际效益)

			2, 3, 4
1,  23,  5
= 10  (存在边际效益)

valid

在full中不存在边际效应的数据为:20,33
在这里插入图片描述

same

需要保证输入数据与输出数据的大小一致:
一般same有三种选择方式:
Same left
same center
same right
一般而言取值为same center 保留中间的四个数值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椒椒。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值