Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:
- The root is the maximum number in the array.
- The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
- The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.
Construct the maximum tree by the given array and output the root node of this tree.
Example 1:
Input: [3,2,1,6,0,5] Output: return the tree root node representing the following tree: 6 / \ 3 5 \ / 2 0 \ 1
Note:
- The size of the given array will be in the range [1,1000].
题目大意:给出一个数组,利用该数组构建二叉搜索树。要求根节点是数组中最大的元素,左子树由数组中最大元素左边的元素构成,右子树由数组中最大元素右边的元素构成。
解题思路:有点类似于快速排序的过程。每次找到数组中最大的元素并把它当做根节点,递归处理左半部分和右半部分即可。
代码如下:
int findMaxElementIndex(int *nums, int numsSize) {
int idx = 0;
int max = 0;
for (int i = 0; i < numsSize; i++) {
if (nums[i] > max) {
max = nums[i];
idx = i;
}
}
return idx;
}
struct TreeNode *constructMaximumBinaryTree(int *nums, int numsSize) {
if (numsSize == 0)return NULL;
int idx = findMaxElementIndex(nums, numsSize);
struct TreeNode *root = (struct TreeNode *) malloc(sizeof *root);
root->val = nums[idx];
root->left = constructMaximumBinaryTree(nums, idx);
root->right = constructMaximumBinaryTree(nums + idx + 1, numsSize - idx - 1);
return root;
}