[深度之眼机器学习训练营第四期]异常检测

本文介绍了异常检测中的密度估计方法,特别是针对高斯分布的使用。通过拟合每个特征的一元高斯分布并计算联合概率来识别异常样本。在构建异常检测系统时,利用训练、验证和测试集进行评估,并对比了异常检测与有监督学习的区别。在特征处理中,强调了观察数据分布和调整异常特征的重要性。
摘要由CSDN通过智能技术生成

密度估计

如果随机变量 X X X的概率分布函数满足
f ( x ) = 1 2 π σ exp ⁡ ( ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi}\sigma}\exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right) f(x)=2π σ1exp(2σ2(xμ)2)
其中 μ \mu μ是均值, σ 2 \sigma^2 σ2是方差,我们就称 X X X服从高斯分布,记作 X ∼ N ( μ , σ 2 ) X \sim \mathcal{N}(\mu,\sigma^2) XN(μ,σ2)

对于数据集的每个特征,都拟合一个一元高斯分布分布函数,然后再把它们乘起来:

P ( x ) = P ( x 1 ; μ 1 , σ 1 2 ) P ( x 2 ; μ 2 , σ 2 2 ) P ( x 3 ; μ 3 , σ 3 2 ) ⋯ P ( x d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值