密度估计
如果随机变量 X X X的概率分布函数满足
f ( x ) = 1 2 π σ exp ( ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi}\sigma}\exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right) f(x)=2πσ1exp(2σ2(x−μ)2)
其中 μ \mu μ是均值, σ 2 \sigma^2 σ2是方差,我们就称 X X X服从高斯分布,记作 X ∼ N ( μ , σ 2 ) X \sim \mathcal{N}(\mu,\sigma^2) X∼N(μ,σ2)。
对于数据集的每个特征,都拟合一个一元高斯分布分布函数,然后再把它们乘起来:
P ( x ) = P ( x 1 ; μ 1 , σ 1 2 ) P ( x 2 ; μ 2 , σ 2 2 ) P ( x 3 ; μ 3 , σ 3 2 ) ⋯ P ( x d