圆环上有10个点,编号为0~9。从0点出发,每次可以逆时针和顺时针走一步,问走n步回到0点共有多少种走法。
输入: 2
输出: 2
解释:有2种方案。分别是0->1->0和0->9->0
走i步走到j的有n中方法 等于 {走i-1步到 j-1} + {走 i-1步到j+1}
dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1];
因为有回环,所以需要走到j-1可能为负数
dp[i][j] = dp[i-1][(j-1+length)%length] + dp[i-1][(j+1+length)%length];
public class Solution {
private static int backToOrigin(int k) {
int[][] dp = new int[k + 1][10];
dp[0][0] = 1;
for (int i = 1; i < k + 1; i++) {
for (int j = 0; j < 10; j++) {
dp[i][j] = dp[i - 1][(j - 1 + 10) % 10] + dp[i - 1][(j + 1) % 10];
}
}
return dp[k][0];
}
private static int backToOrigin(int n, int k) {
if (n == 0) {
return 1;
}
if (n == 2) {
if (k % 2 == 0) {
return k;
} else {
return 0;
}
}
int[][] dp = new int[k + 1][n];
dp[0][0] = 1;
for (int i = 1; i < k + 1; i++) {
for (int j = 0; j < n; j++) {
dp[i][j] = dp[i - 1][(j - 1 + n) % n] + dp[i - 1][(j + 1) % n];
}
}
return dp[k][0];
}
public static void main(String[] args) {
System.out.println(backToOrigin(2));
System.out.println(backToOrigin(3));
System.out.println(backToOrigin(4));
System.out.println(backToOrigin(5));
System.out.println(backToOrigin(6));
System.out.println(backToOrigin(10, 2));
System.out.println(backToOrigin(10, 3));
System.out.println(backToOrigin(10, 4));
System.out.println(backToOrigin(10, 5));
System.out.println(backToOrigin(10, 6));
}
}