矩阵的分解

矩阵的分解

1、特征值分解(EVD-eigen value decomposition)

1.1特征值与特征向量

A \boldsymbol{A} A n n n阶矩阵, λ \lambda λ是一个数,若存在 n n n维非零向量 x \boldsymbol{x} x,使得 A x = λ x \boldsymbol{Ax}=\lambda\boldsymbol{x} Ax=λx,则称 λ \lambda λ是矩阵 A \boldsymbol{A} A的特征值, x \boldsymbol{x} x A \boldsymbol{A} A对应于 λ \lambda λ的特征向量。

1.2特征值分解

我们知道一个矩阵是可以通过特征值和特征向量来表示,那假设存在一个 n × n n×n n×n的满秩矩阵 A \boldsymbol{A} A,我们便可以通过特征值将 A \boldsymbol{A} A分解。
A = U Λ U − 1 = U Λ U T \boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{-1}=\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{T} A=UΛU1=UΛUT
其中, U \boldsymbol{U} U为特征向量组成的标准正交矩阵, Λ \boldsymbol{\Lambda} Λ为特征值组成的对角阵。

2、奇异值分解(SVD-singular value decomposition)

在特征值分解时, A \boldsymbol{A} A n × n n×n n×n的满秩矩阵,那如果 A \boldsymbol{A} A是一个 m × n m×n m×n的普通矩阵时,再想分解矩阵 A \boldsymbol{A} A就需要SVD了。此时的 A \boldsymbol{A} A虽然只是一个 m × n m×n m×n的普通矩阵,但是 A T A \boldsymbol{A}^{T}\boldsymbol{A} ATA是一个 n × n n×n n×n的对称阵,可以根据EVD来分解 A T A \boldsymbol{A}^{T}\boldsymbol{A} ATA
由特征值分解可知:
A T A V = V Λ A T A = V Λ V T \boldsymbol{A}^{T}\boldsymbol{AV}=\boldsymbol{V\Lambda}\\\boldsymbol{A}^{T}\boldsymbol{A}=\boldsymbol{V\Lambda}\boldsymbol{V}^{T} ATAV=VΛATA=VΛVT
其中, V \boldsymbol{V} V为特征向量组成的标准正交矩阵, Λ \boldsymbol{\Lambda} Λ为特征值组成的对角阵。
对于 A V \boldsymbol{AV} AV,有 ( A v i ) T A v j = v i T A T A v j = v i T λ j v j = 0 (\boldsymbol{Av}_{i})^{T}\boldsymbol{Av}_{j}=\boldsymbol{v}^{T}_{i}\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{v}_{j}=\boldsymbol{v}^{T}_{i}\lambda_{j}\boldsymbol{v}_{j}=\boldsymbol{0} (Avi)TAvj=viTATAvj=viTλjvj=0,向量两两正交,满足正交阵第一个条件; ( A v i ) T A v i = v i T A T A v i = v i T λ i v i = λ i (\boldsymbol{Av}_{i})^{T}\boldsymbol{Av}_{i}=\boldsymbol{v}^{T}_{i}\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{v}_{i}=\boldsymbol{v}^{T}_{i}\lambda_{i}\boldsymbol{v}_{i}=\lambda_{i} (Avi)TAvi=viTATAvi=viTλivi=λi ∣ ∣ A v i ) ∣ ∣ 2 = λ i ||\boldsymbol{Av}_{i})||^{2}=\lambda_{i} ∣∣Avi)2=λi,将 A v i \boldsymbol{Av}_{i} Avi单位化,令 σ i = λ i \sigma_{i}=\sqrt{\lambda_{i}} σi=λi ,则 A v i ∣ ∣ A v i ∣ ∣ = A v i σ i = u i \frac{\boldsymbol{Av}_{i}}{||\boldsymbol{Av}_{i}||}=\frac{\boldsymbol{Av}_{i}}{\sigma_{i}}=\boldsymbol{u}_{i} ∣∣Avi∣∣Avi=σiAvi=ui,即 A v i = σ i u i \boldsymbol{Av}_{i}=\sigma_{i}\boldsymbol{u}_{i} Avi=σiui,至此,各向量长度为单位长度,满足正交阵第二个条件。
综上所述, m × n m×n m×n的矩阵 A \boldsymbol{A} A可以分解为:
A = U Σ V T \boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T} A=UΣVT
其中, U \boldsymbol{U} U A A T \boldsymbol{A}\boldsymbol{A}^{T} AAT的特征向量, V \boldsymbol{V} V A T A \boldsymbol{A}^{T}\boldsymbol{A} ATA的特征向量, Σ \boldsymbol{\Sigma} Σ为对角元素为 σ i \sigma_{i} σi的斜对角阵。

3、QR分解

n n n阶非奇异矩阵 A n × n \boldsymbol{A}_{n \times n} An×n可以分解成正交矩阵 Q n × n \boldsymbol{Q}_{n\times n} Qn×n和非奇异上三角矩阵 R n × n \boldsymbol{R}_{n \times n} Rn×n的乘积,即 A = Q R \boldsymbol{A}=\boldsymbol{QR} A=QR,则称该分解为 Q R \boldsymbol{QR} QR分解
对于 m × n m \times n m×n的列满秩矩阵 A \boldsymbol{A} A,有 A m × n = Q m × n ⋅ R n × n \boldsymbol{A}_{m \times n}=\boldsymbol{Q}_{m \times n}\cdot \boldsymbol{R} _{n \times n} Am×n=Qm×nRn×n 。其中 Q \boldsymbol{Q} Q为正交向量组, R \boldsymbol{R} R为非奇异上三角矩阵,该分解也叫做 Q R \boldsymbol{QR} QR分解。
施密特正交化:
设列向量 α 1 , α 2 , α 3 , . . . , α k \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},...,\boldsymbol{\alpha}_{k} α1,α2,α3,...,αk线性无关,令:
β 1 = α 1 β 2 = α 2 − ( β 1 , α 2 ) ( β 1 , β 1 ) β 1 β 3 = α 3 − ( β 1 , α 3 ) ( β 1 , β 1 ) β 1 − ( β 2 , α 3 ) ( β 2 , β 2 ) β 2 . . . β k = α k − ( β 1 , α k ) ( β 1 , β 1 ) β 1 − ( β 2 , α k ) ( β 2 , β 2 ) β 2 − . . . − ( β k − 1 , α k ) ( β k − 1 , β k − 1 ) β k − 1 \begin{aligned}\boldsymbol{\beta}_{1}&=\boldsymbol{\alpha}_{1}\\ \boldsymbol{\beta}_{2}&=\boldsymbol{\alpha}_{2}-\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{2})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}\boldsymbol{\beta}_{1}\\ \boldsymbol{\beta}_{3}&=\boldsymbol{\alpha}_{3}-\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}\boldsymbol{\beta}_{1}-\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}\boldsymbol{\beta}_{2}\\...\\\boldsymbol{\beta}_{k}&=\boldsymbol{\alpha}_{k}-\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}\boldsymbol{\beta}_{1}-\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}\boldsymbol{\beta}_{2}-...-\frac{(\boldsymbol{\beta}_{k-1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{k-1},\boldsymbol{\beta}_{k-1})}\boldsymbol{\beta}_{k-1}\end{aligned} β1β2β3...βk=α1=α2(β1,β1)(β1,α2)β1=α3(β1,β1)(β1,α3)β1(β2,β2)(β2,α3)β2=αk(β1,β1)(β1,αk)β1(β2,β2)(β2,αk)β2...(βk1,βk1)(βk1,αk)βk1
β 1 , β 2 , β 3 , . . . , β k \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3},...,\boldsymbol{\beta}_{k} β1,β2,β3,...,βk两两正交,与 α 1 , α 2 , α 3 , . . . , α k \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},...,\boldsymbol{\alpha}_{k} α1,α2,α3,...,αk等价
令:
η 1 = β 1 ∣ ∣ β 1 ∣ ∣ η 2 = β 2 ∣ ∣ β 2 ∣ ∣ η 3 = β 3 ∣ ∣ β 3 ∣ ∣ . . . η k = β k ∣ ∣ β k ∣ ∣ \boldsymbol{\eta}_{1}=\frac{\boldsymbol{\beta}_{1}}{||\boldsymbol{\beta}_{1}||}\\ \boldsymbol{\eta}_{2}=\frac{\boldsymbol{\beta}_{2}}{||\boldsymbol{\beta}_{2}||}\\\boldsymbol{\eta}_{3}=\frac{\boldsymbol{\beta}_{3}}{||\boldsymbol{\beta}_{3}||}\\...\\\boldsymbol{\eta}_{k}=\frac{\boldsymbol{\beta}_{k}}{||\boldsymbol{\beta}_{k}||} η1=∣∣β1∣∣β1η2=∣∣β2∣∣β2η3=∣∣β3∣∣β3...ηk=∣∣βk∣∣βk
η 1 , η 2 , η 3 , . . . , η k \boldsymbol{\eta}_{1},\boldsymbol{\eta}_{2},\boldsymbol{\eta}_{3},...,\boldsymbol{\eta}_{k} η1,η2,η3,...,ηk两两正交,并且均为单位向量,是与 α 1 , α 2 , α 3 , . . . , α k \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},...,\boldsymbol{\alpha}_{k} α1,α2,α3,...,αk等价的标准正交组
系数矩阵:
α 和 β \boldsymbol{\alpha}和\boldsymbol{\beta} αβ的关系可知:
α 1 = β 1 = ∣ ∣ β 1 ∣ ∣ η 1 α 2 = ( β 1 , α 2 ) ( β 1 , β 1 ) β 1 + β 2 = ( β 1 , α 2 ) ( β 1 , β 1 ) ∣ ∣ β 1 ∣ ∣ η 1 + ∣ ∣ β 2 ∣ ∣ η 2 α 3 = ( β 1 , α 3 ) ( β 1 , β 1 ) β 1 + ( β 2 , α 3 ) ( β 2 , β 2 ) β 2 + β 3 = ( β 1 , α 3 ) ( β 1 , β 1 ) ∣ ∣ β 1 ∣ ∣ η 1 + ( β 2 , α 3 ) ( β 2 , β 2 ) ∣ ∣ β 2 ∣ ∣ η 2 + ∣ ∣ β 3 ∣ ∣ η 3 . . . α k = ( β 1 , α k ) ( β 1 , β 1 ) β 1 + ( β 2 , α k ) ( β 2 , β 2 ) β 2 + . . . + ( β k − 1 , α k ) ( β k − 1 , β k − 1 ) β k − 1 + β k = ( β 1 , α k ) ( β 1 , β 1 ) ∣ ∣ β 1 ∣ ∣ η 1 + ( β 2 , α k ) ( β 2 , β 2 ) ∣ ∣ β 2 ∣ ∣ η 2 + . . . + ( β k − 1 , α k ) ( β k − 1 , β k − 1 ) ∣ ∣ β k − 1 ∣ ∣ η k − 1 + ∣ ∣ β k ∣ ∣ η k \begin{aligned}\boldsymbol{\alpha}_{1}&=\boldsymbol{\beta}_{1}=||\boldsymbol{\beta}_{1}||\boldsymbol{\eta}_{1}\\ \boldsymbol{\alpha}_{2}&=\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{2})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\\&=\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{2})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}||\boldsymbol{\beta}_{1}||\boldsymbol{\eta}_{1}+||\boldsymbol{\beta}_{2}||\boldsymbol{\eta}_{2}\\ \boldsymbol{\alpha}_{3}&=\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}\boldsymbol{\beta}_{1}+\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}\boldsymbol{\beta}_{2}+\boldsymbol{\beta}_{3}\\&=\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}||\boldsymbol{\beta}_{1}||\boldsymbol{\eta}_{1}+\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}||\boldsymbol{\beta}_{2}||\boldsymbol{\eta}_{2}+||\boldsymbol{\beta}_{3}||\boldsymbol{\eta}_{3}\\ ...\\\boldsymbol{\alpha}_{k}&=\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}\boldsymbol{\beta}_{1}+\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}\boldsymbol{\beta}_{2}+...+\frac{(\boldsymbol{\beta}_{k-1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{k-1},\boldsymbol{\beta}_{k-1})}\boldsymbol{\beta}_{k-1}+\boldsymbol{\beta}_{k}\\&=\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}||\boldsymbol{\beta}_{1}||\boldsymbol{\eta}_{1}+\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}||\boldsymbol{\beta}_{2}||\boldsymbol{\eta}_{2}+...+\frac{(\boldsymbol{\beta}_{k-1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{k-1},\boldsymbol{\beta}_{k-1})}||\boldsymbol{\beta}_{k-1}||\boldsymbol{\eta}_{k-1}+||\boldsymbol{\beta}_{k}||\boldsymbol{\eta}_{k}\end{aligned} α1α2α3...αk=β1=∣∣β1∣∣η1=(β1,β1)(β1,α2)β1+β2=(β1,β1)(β1,α2)∣∣β1∣∣η1+∣∣β2∣∣η2=(β1,β1)(β1,α3)β1+(β2,β2)(β2,α3)β2+β3=(β1,β1)(β1,α3)∣∣β1∣∣η1+(β2,β2)(β2,α3)∣∣β2∣∣η2+∣∣β3∣∣η3=(β1,β1)(β1,αk)β1+(β2,β2)(β2,αk)β2+...+(βk1,βk1)(βk1,αk)βk1+βk=(β1,β1)(β1,αk)∣∣β1∣∣η1+(β2,β2)(β2,αk)∣∣β2∣∣η2+...+(βk1,βk1)(βk1,αk)∣∣βk1∣∣ηk1+∣∣βk∣∣ηk
因此:
r 1 = [ ∣ ∣ β 1 ∣ ∣ 0 0 . . . 0 ] T r 2 = [ ( β 1 , α 2 ) ( β 1 , β 1 ) ∣ ∣ β 1 ∣ ∣ ∣ ∣ β 2 ∣ ∣ 0 . . . 0 ] T r 3 = [ ( β 1 , α 3 ) ( β 1 , β 1 ) ∣ ∣ β 1 ∣ ∣ ( β 2 , α 3 ) ( β 2 , β 2 ) ∣ ∣ β 2 ∣ ∣ ∣ ∣ β 3 ∣ ∣ . . . 0 ] T . . . r k = [ ( β 1 , α k ) ( β 1 , β 1 ) ∣ ∣ β 1 ∣ ∣ ( β 2 , α k ) ( β 2 , β 2 ) ∣ ∣ β 2 ∣ ∣ . . . ( β k − 1 , α k ) ( β k − 1 , β k − 1 ) ∣ ∣ β k − 1 ∣ ∣ ∣ ∣ β k ∣ ∣ η k ] T \begin{aligned}\boldsymbol{r}_{1}&=\begin{bmatrix}||\boldsymbol{\beta}_{1}||&0&0&...&0\end{bmatrix}^{T}\\ \boldsymbol{r}_{2}&=\begin{bmatrix}\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{2})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}||\boldsymbol{\beta}_{1}||&||\boldsymbol{\beta}_{2}||&0&...&0\end{bmatrix}^{T}\\ \boldsymbol{r}_{3}&=\begin{bmatrix}\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}||\boldsymbol{\beta}_{1}||&\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{3})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}||\boldsymbol{\beta}_{2}||&||\boldsymbol{\beta}_{3}||&...&0\end{bmatrix}^{T}\\ ...\\\boldsymbol{r}_{k}&=\begin{bmatrix}\frac{(\boldsymbol{\beta}_{1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{1})}||\boldsymbol{\beta}_{1}||&\frac{(\boldsymbol{\beta}_{2},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{2})}||\boldsymbol{\beta}_{2}||&...&\frac{(\boldsymbol{\beta}_{k-1},\boldsymbol{\alpha}_{k})}{(\boldsymbol{\beta}_{k-1},\boldsymbol{\beta}_{k-1})}||\boldsymbol{\beta}_{k-1}||&||\boldsymbol{\beta}_{k}||\boldsymbol{\eta}_{k}\end{bmatrix}^{T}\end{aligned} r1r2r3...rk=[∣∣β1∣∣00...0]T=[(β1,β1)(β1,α2)∣∣β1∣∣∣∣β2∣∣0...0]T=[(β1,β1)(β1,α3)∣∣β1∣∣(β2,β2)(β2,α3)∣∣β2∣∣∣∣β3∣∣...0]T=[(β1,β1)(β1,αk)∣∣β1∣∣(β2,β2)(β2,αk)∣∣β2∣∣...(βk1,βk1)(βk1,αk)∣∣βk1∣∣∣∣βk∣∣ηk]T
QR分解:
1、写出矩阵 A \boldsymbol{A} A的列向量 α 1 , α 2 , α 3 , . . . , α k \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3},...,\boldsymbol{\alpha}_{k} α1,α2,α3,...,αk
2、将 A \boldsymbol{A} A的列向量施密特正交化得到正交向量组 η 1 , η 2 , η 3 , . . . , η k \boldsymbol{\eta}_{1},\boldsymbol{\eta}_{2},\boldsymbol{\eta}_{3},...,\boldsymbol{\eta}_{k} η1,η2,η3,...,ηk,由此构成矩阵 Q \boldsymbol{Q} Q
3、把矩阵 A \boldsymbol{A} A的列向量表示成正交向量组 η 1 , η 2 , η 3 , . . . , η k \boldsymbol{\eta}_{1},\boldsymbol{\eta}_{2},\boldsymbol{\eta}_{3},...,\boldsymbol{\eta}_{k} η1,η2,η3,...,ηk的线性组合,其中列向量 r 1 , r 2 , r 3 , . . . , r k \boldsymbol{r}_{1},\boldsymbol{r}_{2},\boldsymbol{r}_{3},...,\boldsymbol{r}_{k} r1,r2,r3,...,rk构成系数矩阵 R \boldsymbol{R} R
4、 A = Q R \boldsymbol{A}=\boldsymbol{QR} A=QR
例子:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值