一、透视表
1、 pivot
一般状态下,数据在DataFrame会以压缩(stacked)状态存放,两个类别被叠在一列中,pivot函数可将某一列作为新的cols:
此外,pivot函数具有很强的局限性,除了功能上较少之外,还不允许values中出现重复的行列索引对(pair)
注意:更多的时候会选择使用强大的pivot_table函数
2、pivot_table
pivot_table由于功能更多,速度上自然是比不上原来的pivot函数:
Pandas中提供了各种选项,下面介绍常用参数:
1) aggfunc:对组内进行聚合统计,可传入各类函数,默认为’mean’
2) margins:汇总边际状态
3)行、列、值都可以为多级
3、crosstab(交叉表)
交叉表是一种特殊的透视表,典型的用途如分组统计
交叉表的功能也很强大(但目前还不支持多级分组),重要的参数有:
1) values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
2) 除了边际参数margins外,还引入了normalize参数,可选’all’,‘index’,'columns’参数值
二、其他变形方法
1、melt
melt函数可以认为是pivot函数的逆操作,将unstacked状态的数据,压缩成stacked,使“宽”的DataFrame变“窄”
melt函数中的id_vars表示需要保留的列,value_vars表示需要stack的一组列
2、压缩与展开
1)stack:这是最基础的变形函数,总共只有两个参数:level和dropna
stack函数可以看做将横向的索引放到纵向,因此功能类似与melt,参数level可指定变化的列索引是哪一层(或哪几层,需要列表)
2)unstack:stack的逆函数,功能上类似于pivot_table
三、哑变量与因子化
##1、Dummy Variable(哑变量)
2、 factorize方法
该方法主要用于自然数编码,并且缺失值会被记做-1,其中sort参数表示是否排序后赋值