pandas基础学习笔记4

一、透视表

1、 pivot

一般状态下,数据在DataFrame会以压缩(stacked)状态存放,两个类别被叠在一列中,pivot函数可将某一列作为新的cols:
此外,pivot函数具有很强的局限性,除了功能上较少之外,还不允许values中出现重复的行列索引对(pair)
注意:更多的时候会选择使用强大的pivot_table函数

2、pivot_table

pivot_table由于功能更多,速度上自然是比不上原来的pivot函数:
Pandas中提供了各种选项,下面介绍常用参数:
1) aggfunc:对组内进行聚合统计,可传入各类函数,默认为’mean’
2) margins:汇总边际状态
3)行、列、值都可以为多级

3、crosstab(交叉表)

交叉表是一种特殊的透视表,典型的用途如分组统计

交叉表的功能也很强大(但目前还不支持多级分组),重要的参数有:
1) values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
2) 除了边际参数margins外,还引入了normalize参数,可选’all’,‘index’,'columns’参数值

二、其他变形方法

1、melt

melt函数可以认为是pivot函数的逆操作,将unstacked状态的数据,压缩成stacked,使“宽”的DataFrame变“窄”
melt函数中的id_vars表示需要保留的列,value_vars表示需要stack的一组列

2、压缩与展开

1)stack:这是最基础的变形函数,总共只有两个参数:level和dropna
stack函数可以看做将横向的索引放到纵向,因此功能类似与melt,参数level可指定变化的列索引是哪一层(或哪几层,需要列表)
2)unstack:stack的逆函数,功能上类似于pivot_table

三、哑变量与因子化

##1、Dummy Variable(哑变量)

2、 factorize方法

该方法主要用于自然数编码,并且缺失值会被记做-1,其中sort参数表示是否排序后赋值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值