深度学习与TensorFlow实战(十一)卷积神经网络—VGG神经网络应用 图像风格迁移

本文介绍如何使用预训练的VGG19模型进行图像风格迁移,将图像A转换为图像B的风格,得到结果C。提供VGG19模型下载链接以及model.py、settings.py和train.py的代码片段,内容尚未完整展示。
摘要由CSDN通过智能技术生成

先看一下图像效果。
把图像A转成B风格的山水画,结果C。
A
这里写图片描述

B
这里写图片描述

结果C:
这里写图片描述

训练好的VGG19模型下载:http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

model.py代码:

import tensorflow as tf
import numpy as np
import settings
import scipy.io
import scipy.misc


class Model(object):
    def __init__(self, content_path, style_path):
        self.content = self.loadimg(content_path)  # 加载内容图片
        self.style = self.loadimg(style_path)  # 加载风格图片
        self.random_img = self.get_random_img()  # 生成噪音内容图片
        self.net = self.vggnet()  # 建立vgg网络

    def vggnet(self):
        # 读取预训练的vgg模型
        vgg = scipy.io.loadmat(settings.VGG_MODEL_PATH)
        vgg_layers = vgg['layers'][0]
        net = {}
        # 使用预训练的模型参数构建vgg网络的卷积层和池化层
        # 全连接层不需要
        # 注意,除了input之外,这里参数都为constant,即常量
        # 和平时不同,我们并不训练vgg的参数,它们保持不变
        # 需要进行训练的是input,它即是我们最终生成的图像
        net['input'] = tf.Variable(np.zeros([1, settings.IMAGE_HEIGHT, settings.IMAGE_WIDTH, 3]), dtype=tf.float32)
        # 参数对应的层数可以参考vgg模型图
        net['conv1_1'] = self.conv_relu(net['input'], self.get_wb(vgg_layers, 0))
        net['conv1_2'] = self.conv_relu(net['conv1_1'], self.get_wb(vgg_layers, 2))
        net['pool1'] = self.pool(net['conv1_2'])
        net['conv2_1'] = self.conv_relu(net['pool1'], self.get_wb(vgg_layers, 5))
        net['conv2_2'] = self.conv_relu(net['conv2_1'], self.get_wb(vgg_layers, 7))
        net['pool2'] = self.pool(net['conv2_2'])
        net['conv3_1'] =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值