统计学习方法 第八章 习题

这篇博客探讨了使用AdaBoost算法构建一个基于决策树桩的强分类器,用于评估公司招聘中身体、业务能力和发展潜力的数据。同时,对比了支持向量机和逻辑斯蒂回归模型的学习策略与算法。
摘要由CSDN通过智能技术生成

8.1 某公司招聘支援考查身体、业务能力、发展潜力这三项。身体分为合格1、不合格0两级,业务能力和发展潜力分为上1,中2,下3三级。分类为合格1,不合格-1两类。已知10个人的数据,如下表所示,假设弱分类器为决策树桩,试用AdaBoost算法学习一个强分类器。

应聘人员情况数据表
1    2    3    4    5    6    7    8    9    10
身体    0    0    1    1    1    0    1    1    1    0
业务    1    3    2    1    2    1    1    1    3    2
潜力    3    1    2    3    3    2    2    1    1    1
分类    -1    -1    -1    -1    -1    -1    1    1    -1    -1

#-*- coding:UTF-8 -*-
import numpy as np

class ABSboost():  
   def __init__(self,Cdt,X,Y):
      self.Cdt = Cdt
      self.X = X
      self.Y = Y
      self.N = len(Y)
      self.D = []
      self.Gx = []
      self.createGxFun()#创建所有可能的分类器
      
   def createGxFun(self):
      self.AllGX = {}
      R = set(self.Y)
      for i,c in enumerate(self.Cdt):
         cvalue = set(self.X[::,i:i+1:1].T[0])#找到该条件的可能值
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值