热电材料机器学习方法 (1)

本文探讨了机器学习如何加速热电材料的性质发现,特别介绍了逆设计方法,这是一种先声明并计算理想功能,再探索实现策略的技术。通过小型数据库策略和材料科学的结合,逆设计能显著提升热电材料的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:热电材料十分重要,性能需要改善。第一:本文概述了机器学习方法在热电研究中的应用,并系统讨论了每种机器学习方法所起的作用。第二:热电相关数据库的规模远远小于其它领域的数据库,未来克服这一缺陷,讨论了利用小型数据库促进材料科学发展的策略。

**背景:**热电定义,重要性。热电研究是多学科领域。引申到用数据分析进行机器学习可以加速发现热电材料的性质[文献8]。热电优值ZT用来评估热电材料的潜力,被定义为:
在这里插入图片描述
除了上述影响热电优值ZT的塞贝克系数α、电导率ρ和热导率K之外,还和晶格振动、电子性质、自旋性质有关。见图1.
在这里插入图片描述

电导率ρ、热导率K、塞贝克系数α和不同的基本材料性能相关,从这里开始引入更基层的描述。该基层描述见图2:
在这里插入图片描述
由图2可知,载流子迁移率、态密度有效质量、pauling 电负性总是被选择作为描述符,比如:作为模型输入的一套描述参数,去产生塞贝克系数、电导率的统计模型,并且旋转角动量和轨道角动量也包括在内,因为自旋热电效应。但是对于晶格热导率、原子质量、键长、原始晶胞的原子数量、晶格对称性、比热、声速和晶格非简谐效应都是重要的描述符。除了分离的电子和光子性质,电子声子相互作用经常决定电导率。在一些特殊的条件下,光电相互作用对热导率和塞贝克系数也有很重要的影响。电子声子相互作用与形变势理论中的弹性模量息息相关。并且电导率、热导率、塞贝克系数也取决于样品质量,包括晶粒尺寸和缺陷浓度。 很明显,由于复杂的联系导致提高热电材料整体效率具有很大的挑战性。而且纳米工程提供了很多的策略去提高ZT值,比如通过多层散射减少热导率、布拉格散射和局域谐振。
引入DFT密度泛函理论,引申到理论分析和机器学习的结合。理论和实验的结合去进行进一步的探索。
为了满足目标功能,本文介绍逆设计方法。由图3表示。
在这里插入图片描述
图3的底部包括了已知物质和未知物质(化学上可信但是未报导)。上部表示ZT性质的轮廓图。 传统的直接设计方法是调查完所有的组成物质之后,它们的性质被计算之后预测一个新物质。相反,逆设计方法中,功能首先被声明和计算,仅仅只有理想性质被调查。为了材料的设计,机器学习被用作合成步骤来加速策略探索的过程。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值