Coursera吴恩达机器学习课程 总结笔记及作业代码——第6周有关机器学习的小建议

1.1 Deciding what to try next

当你调试你的学习算法时,当面对测试集你的算法效果不佳时,你会怎么做呢?
这里写图片描述

  • 获得更多的训练样本?
  • 尝试更少的特征?
  • 尝试获取附加的特征?
  • 尝试增加多项式的特征?
  • 尝试增加 λ ?
  • 尝试减小 λ ?

由此我们引出了机器学习诊疗法


1.2 EvaluaDng a hypothesis

这里写图片描述
我们通过将数据集分成训练集和测试集,
将训练集训练出的参数用测试集数据测试性能。

线性回归时:
Jtest(θ)=12mtestmtesti=1(hθ(x(i)test)y(i)test)2

逻辑回归时:
Jtest(θ)=12mtestmtesti=1y(i)testlog(hθ(x(i)tes

  • 2
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值