强化学习中的调参经验与编程技巧(on policy 篇)

本文探讨强化学习中针对Pendulum、Mujoco和DeepMind Control Suite的调参经验,涉及PPO算法的改进,如clip V、KL early stop和normalization。通过调整超参数,如最大KL值和熵系数,以优化学习过程,提高奖励稳定性。
摘要由CSDN通过智能技术生成

在强化学习的训练过程中,常常会遇见以下问题

在某一环境中可以work的超参数拿去训练别的环境却怎么训练不出来

训练时熵在增大

训练动作达到边界

本文通过调试几个环境的案例来探究强化学习的调参方法

1 pendulum

摆锤这个环境可以看做连续控制中的入门环境了,环境初始时在一个随机的位置,目标是将其摆动以使其保持直立,它的状态维度为3,动作维度为1

拟使用PPO解决这个问题,ppo的流程如下:

  1. 使用Actor网络与环境交互一定步数,记录下(state, action, reward, v, done)
  2. 根据记录下来的值计算优势值adv(更新actor网络使用)和v_target(更新critic网络使用)
  3. 计算loss更新actor网络和critic网络
  • 首先说第一步,在和环境交互的过程中,我们往往规定了步数,在规定的step内,环境往往没有done,这会给我们这一次迭代计算adv有误差,面对这个问题,往往有两种处理方式:

    • 完成这次交互,也就是超过这一次规定的迭代步数直到done,这样做会使每一次迭代更新时的交互step不同,比较不同算法在相同的step性能如何时略显不公平
    • 不完成这次交互,这样会使最后step采用gae对adv估值存在近似。

    在John Schulman’s 程序中,对V估值采用这种方式:

    V(s_t+1) = {0 if s_t is terminal         
               {v_s_{t+1} if s_t not terminal and t != T (last step)         
               {v_s if s_t not terminal and t == T
    

    也就是最后一个step如果不是终止状态,则它下一状态的V估值为当前状态的V估值

    在有的程序中,也采用V神经网络下一状态的值作为对下一状态的V函数估值

  • 第二步流程中计算v_target会根据是否采用gae有两种计算方式

    • 根据每一step的reward按照gamma return的方式计算v_target
    • 根据每一step的adv和v估值累加作为v_target
  • 第三步中loss计算包含有aloss,vloss和entropy

1.1 初始

我们先使用简单的PPO来训练一下环境,参数选择如下:

  • actor,critic 网络初始化为正交初始化
  • steps=2048;
  • batch=64;
  • lr=3e-4且经过训练迭代数逐渐减小;
lam = lambda f: 1 - f / train_steps
self.opti_scheduler = torch.optim.lr_scheduler.LambdaLR(self.opti, lr_lambda=lam)
  • 采用return方式计算v_target;
  • adv计算采用gae
  • loss 计算添加熵,系数(self.c_en)为0.01
loss = aloss - loss_entropy*self.c_en + v_loss*self.c_vf
  • max_grad_norm=0.5
torch.nn.utils.clip_grad_norm_(self.critic.parameters(), self.max_grad_norm)
torch.nn.utils.<
对于强化学习算法PPO(Proximal Policy Optimization)的调参技巧,以下是一些建议: 1. 学习率(learning rate):PPO的学习率是一个重要的超参数,它控制着每次更新网络权重时的步长。通常情况下,可以尝试不同的学习率值,从小到大进行调整,并观察算法的性能。较小的学习率可能导致训练收敛较慢,而较大的学习率可能导致不稳定的训练。 2. 折扣因子(discount factor):折扣因子决定了对于未来奖励的重视程度。较小的折扣因子会更加关注即时奖励,而较大的折扣因子会更加关注长期累积奖励。对于不同的任务,可以尝试不同的折扣因子值,并观察算法在长期和短期奖励上的表现。 3. PPO 损失函数的系数参数:PPO算法有两个重要的系数参数:clip_epsilon和value_coefficient。clip_epsilon控制着策略更新时的最大比例差异,较小的值会使得策略更新更加保守。value_coefficient则控制了值函数损失的权重,较大的值会更注重值函数的准确性。可以尝试不同的系数参数值,并观察算法的表现。 4. 神经网络结构:PPO算法的性能也与神经网络结构有关。调整神经网络的层数、节点数等参数,可以对算法的性能产生影响。一般情况下,可以尝试简单的网络结构,并逐步进行增加复杂度的实验。 5. 训练样本量:PPO算法需要使用大量的训练样本来进行策略优化。增加训练样本量可以提高算法性能,但同时也增加了计算和存储的开销。可以尝试不同的训练样本量,并观察算法在稳定性和性能上的表现。 需要注意的是,调参是一个迭代的过程,需要通过实验和观察来确定最佳的参数组合。同时,还可以考虑使用自动调参工具,例如使用网格搜索或贝叶斯优化等方法帮助找到最佳参数组合。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值