构建Pytroch-GPU镜像(基于cuda的nvidia-docker镜像)

  1. 前言

可以直接拉取pytorch官方镜像docker pull pytorch/pytorch:1.5-cuda10.1-cudnn7-runtime

docker pull pytorch/pytorch:1.5-cuda10.1-cudnn7-runtime
docker pull pytorch/pytorch:1.5-cuda10.1-cudnn7-decel

但是该方法拉取的镜像基于conda安装的,如果需要调整cuda以及python版本会造成依赖被改变,并且创建的镜像过于庞大(Python版本都是3.7,本人使用的一个源码需要Python3.6,最后导出的镜像居然有9.4G)

  1. 解决方法

直接基于nvida/cuda,使用DockerFile构建一个轻便的镜像docker build -t pytorch-gpu .

FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04
MAINTAINER zha
# #LABEL version="1.0"
# #指定系统编码
ENV LANG C.UTF-8
EXPOSE 8080
RUN sed -i s:/archive.ubuntu.com:/mirrors.aliyun.com/ubuntu:g /etc/apt/sources.list
# #RUN sed -i s:/archive.ubuntu.com:/mirrors.tuna.tsinghua.edu.cn/ubuntu:g /etc/apt/sources.list
RUN cat /etc/apt/sources.list && apt-get clean && apt-get -y update --fix-missing
RUN apt-get -y install python3.6 python3-pip && ln -s /usr/bin/python3.6 /usr/bin/python && ln -s /usr/bin/pip3 /usr/bin/pip
RUN apt-get install -y libsm6 libxrender1 libxext-dev
# #安装需要的库
RUN pip install -i https://mirrors.aliyun.com/pypi/simple/ web.py torch==1.3.1 torchvision==0.4.2 opencv-python scipy flask
RUN apt-get clean && rm -r ~/.cache/pip
  1. 体积更小的镜像

如果镜像不需要后期维护,可以直接使用docker exec -it nvidia/cuda:10.1 /bin/bash进入镜像内部使用dockerfile内的指令构建完毕后使用docker commit指令由容器创建镜像。这样的创建的镜像由于只有一层,体积会更小。
注意:
该方法创建的镜像不包含构建时的信息,可能存在隐患(本人当前使用的场景不考虑后期维护,可以无视)


  • COPY指令与ADD指令类似,同样可以将本地文件拷贝到镜像内。
  • 但是ADD可以添加src为URL的源数据到镜像,COPY只能是本地数据。
  • docker build -t imageName .指令后面的.表示使用当前目录下的dockerfile构建镜像。

2020年9月5日记录:
OpenCV新版本可能会造成错误,可以指定版本为4.3.0以下。
Ubuntu使用第三方源会造成某些软件包的GPG密钥出错,暂时没找到解决方案。只能进入容器内部进行构建,完成后使用docker commit指令提交为镜像。

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: PyTorch-GPUCUDA版本对应如下: PyTorch-GPU 1..:CUDA 9. PyTorch-GPU 1.1.:CUDA 9.、CUDA 10. PyTorch-GPU 1.2.:CUDA 9.、CUDA 10.、CUDA 10.1 PyTorch-GPU 1.3.:CUDA 9.2、CUDA 10.、CUDA 10.1 PyTorch-GPU 1.4.:CUDA 10.、CUDA 10.1、CUDA 10.2 PyTorch-GPU 1.5.:CUDA 10.1、CUDA 10.2 PyTorch-GPU 1.6.:CUDA 10.1、CUDA 10.2、CUDA 11. PyTorch-GPU 1.7.:CUDA 10.1、CUDA 10.2、CUDA 11. PyTorch-GPU 1.8.:CUDA 11.1 PyTorch-GPU 1.9.:CUDA 11.1、CUDA 11.2 需要注意的是,不同版本的PyTorch-GPU可能需要不同版本的CUDA才能正常运行。因此,在安装PyTorch-GPU时,需要根据自己的CUDA版本选择相应的PyTorch-GPU版本。 ### 回答2: PyTorch是一个流行的深度学习库,支持使用GPU加速算法运行以提高训练速度。在PyTorch中,CUDA是一种用于在NVIDIA GPU上加速计算的并行计算平台和API集合。因此,PyTorch的GPU功能需要与CUDA版本兼容。 PyTorch的GPU支持是通过与CUDA库进行交互来实现的。由于PyTorch和CUDA的版本兼容性问题,所以要使用GPU功能,需要确保安装有与PyTorch版本兼容的CUDA库。常见的PyTorch版本与CUDA版本对应关系如下: - PyTorch 1.0.x 对应 CUDA 9.0 - PyTorch 1.1.x-1.2.x 对应 CUDA 10.0 - PyTorch 1.3.x 对应 CUDA 10.1 - PyTorch 1.4.x-1.5.x 对应 CUDA 10.2 需要注意的是,不同的PyTorch版本和不同的GPU型号可能有不同的CUDA版本要求。因此,在使用GPU加速算法时,需要根据具体情况选择合适的PyTorch版本和CUDA版本。 总之,为了确保PyTorch能够充分利用GPU的加速能力,需要安装正确版本的CUDA库,并确保与PyTorch版本兼容。通过此功能使用GPU加速可以加快训练速度,提高模型性能。 ### 回答3: PyTorch是一个基于Python的开源机器学习框架,具有广泛的应用和活跃的社区支持。PyTorch可以在CPU和GPU上运行,而使用GPU的最简单方法是使用CUDA(Compute Unified Device Architecture)工具包。CUDA是由NVIDIA开发的并行计算平台和应用程序接口,用于在GPU上进行高性能计算。因此,PyTorch需要与正确版本的CUDA协同工作,以在GPU上实现最佳性能。 不同版本的PyTorch对应着不同版本的CUDA,因此在安装PyTorch之前需要确定使用哪个版本的CUDA。在PyTorch官网上推荐使用的版本如下: PyTorch 1.7.x:CUDA 10.1,CUDA 10.2或CUDA 11.0 PyTorch 1.6.x:CUDA 10.1,CUDA 10.2或CUDA 11.0 PyTorch 1.5.x:CUDA 10.1或CUDA 10.2 PyTorch 1.4.x:CUDA 10.1 PyTorch 1.3.x:CUDA 10.1 PyTorch 1.2.x:CUDA 9.2 需要注意的是,不同版本的CUDA需要特定的GPU架构才能运行,因此在安装CUDA之前,需要先了解自己的GPU支持哪些架构。此外,为了避免因为版本不匹配而发生不必要的打扰或错误,建议在安装PyTorch之前也检查一下自己机器上CUDA的版本。如果是多个版本共存,则需要设置环境变量以指示使用哪个版本。 总之,在安装和使用PyTorch时,需要对应选择正确的CUDA版本,以保证在GPU上获得最佳性能和稳定性。同时,需要了解自己机器上GPU的性能和支持的CUDA版本,以避免不必要的打扰和错误。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值