设有N堆石子排成一排,其编号为1,2,3,…,N。每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
思路:假设有一堆石子,1,3,5,2,我们把1,3合并,5,2合并,总共是4 + 7 + 11 = 22.是最小代价。如下图所示:
所有合并的个数,如果选取堆数有n - 1次选择,然后第二次从n- 1中选就有n -2次选择--》(n - 1)*(n - 2)*.....
状态表示f[i][j],集合:所有将i到j合并成一堆的方案的集合。(j - i)!。属性:min,集合中付出的最小代价。
状态计算:化整为零的过程,把f[i][j]分解成若干个子问题,分而治之。实际上就是从最后一步开始往前递推。
最小方案:min(f(i, k)) +min(f(k + 1, j))+从i到j的部分和s[i] - s[i - 1];
输入格式
第一行一个数N表示石子的堆数N。
第二行N个数,表示每堆石子的质量(均不超过1000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤3001≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 510;
int n;
int s[N];//前缀和
int f[N][N];
int main()
{
cin >> n;
for (int i = 1; i <= n; i ++) cin >> s[i], s[i] += s[i - 1];//更新前缀和
for (int len = 2; len <= n; len ++)//len从2开始,如果从1开始没有意义
for (int i = 1; i + len - 1 <= n; i ++)//枚举区间左端点:i+ len - 1是左边端点
{
int j = i + len - 1;//枚举右端点
//枚举之前
f[i][j] = 1e8;//先将i,J初始化成一个特别大的值
for (int k = i; k < j; k ++)//枚举k
//式子直接抄过来
f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]);
}
//把f[1][n]带入定义就是所有将1-n合并的方案最大值
cout << f[1][n] << endl;
return 0;
}