农民约翰的N头奶牛(编号为1..N)计划逃跑并加入马戏团,为此它们决定练习表演杂技。
奶牛们不是非常有创意,只提出了一个杂技表演:
叠罗汉,表演时,奶牛们站在彼此的身上,形成一个高高的垂直堆叠。
奶牛们正在试图找到自己在这个堆叠中应该所处的位置顺序。
这N头奶牛中的每一头都有着自己的重量WiWi以及自己的强壮程度SiSi。
一头牛支撑不住的可能性取决于它头上所有牛的总重量(不包括它自己)减去它的身体强壮程度的值,现在称该数值为风险值,风险值越大,这只牛撑不住的可能性越高。
您的任务是确定奶牛的排序,使得所有奶牛的风险值中的最大值尽可能的小。
思路:
把公共部分去掉
满足这个等式,危险系数就会降低:
把牛的最大值从小到大排序,然后顺便计算一下他的能力值,就能求出结果。
输入格式
第一行输入整数N,表示奶牛数量。
接下来N行,每行输入两个整数,表示牛的重量和强壮程度,第i行表示第i头牛的重量WiWi以及它的强壮程度SiSi。
输出格式
输出一个整数,表示最大风险值的最小可能值。
数据范围
1≤N≤500001≤N≤50000,
1≤Wi≤10,0001≤Wi≤10,000,
1≤Si≤1,000,000,0001≤Si≤1,000,000,000
输入样例:
3
10 3
2 5
3 3
输出样例:
2
//为了使风险值的最大值最小,应该将牛按照W+S从小到大的顺序从下往上排列。
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> sums;
bool cmp(int a, int b)
{
return sums[a] < sums[b];
}
int main()
{
int N, W, S;
cin >> N;
vector<int> Ws(N), Ss(N), ranks(N);
sums.resize(N);
for (int i = 0; i < N; i++) {
cin >> W >> S;
Ws[i] = W;
Ss[i] = S;
sums[i] = W + S;
ranks[i] = i;
}
sort(ranks.begin(), ranks.end(), cmp);
int res = -1000000000;
int sum_W = 0;
for (int i = 0; i < N; i++) {
int cur_id = ranks[i];
res = max(res, sum_W - Ss[cur_id]);
sum_W += Ws[cur_id];
}
cout << res;
return 0;
}