趣学算法--初识算法

14天阅读挑战赛
努力是为了不平庸~

目录

一、什么是算法?

1.1一个简单的示例

二、算法所具备的特性

三、“好”算法的标准

四、时间复杂度

4.1常见的算法时间复杂度分类

五、空间复杂度


一、什么是算法?

        瑞士著名的科学家Niklaus Wirth教授曾提出:数据结构+算法=程序

        数据结构是程序的骨架,算法是程序的灵魂。

算法只是对问题求解方法的一种描述, 它不依赖于任何一种语言,既可以用自然语言、程序设计语言(C、C++、Java、Python等)描述,也可以用流程图、框图来表示。通常情况下,为了更清楚地说明算法的本质,我们会去除计算机的语法规则和细节,采用“伪代码”来描述算法。“伪代码”介于自然语言和程序设计语言之间,它更符合人们的表达方式,容易理解,但它不是严格的程序设计语言。如果要上机调试,则需要转换成标准的计算机程序设计语言才能运行。

1.1一个简单的示例

        写一个算法,求下序列和:

                                -1,1,-1,1,...,(-1)ⁿ

//算法1
int sum1(int n)
{
    int sum = 0;
    for (int i = 1; i <=n; ++i)
        sum += pow(-1,i); //表示-1的i次幂

    return sum;
}

        上述代码是一个解决方法,但是n越大,for循环执行的次数就越多。是不是可以有另外一种算法?

        

int sum2(int n)
{
    if (n%2==0)
        return 0;
    else
        return -1;
}

         算法1需要运行n+1次,而算法2只需要运行1次。同样的问题,有各种各样的解决算法。

二、算法所具备的特性

  1. 有穷性:算法是由若干指令组成的有穷序列,总是在执行若干次后结束,不可能永不停止。
  2. 确定性:每条语句都有确定的含义,无歧义。
  3. 可行性:算法在当前环境条件下可以通过有限次运算来实现。
  4. 输入/输出:有零个或多个输入以及一个或多个输出。

三、“好”算法的标准

        怎么知道我们写的算法好不好呢?“好”算法也有它的衡量标准:

  1. 正确性:正确性是指算法能够满足具体问题的需求,程序运行正常,无语法错误,能够通过典型的软件测试,达到预期。
  2. 易读性:算法遵循标识符命名规则,简洁易懂,注释语句恰当适量,方便自己和他人阅读,便于后期调试和修改。
  3. 健壮性:算法对非法数据及操作有较好的反应和处理。例如,在学生信息管理系统中等级学生年龄时,若将21岁误输入为210岁,则系统应该有错误提示。
  4. 高效性:高效性是指算法运行效率高,即算法运行所消耗的时间短。
  5. 低存储性:低存储性是指算法所需的存储空间小。对于像手机、平板电脑这样的嵌入式设备,算法如果占用空间过大,则无法运行。算法占用的空间大小被称为空间复杂度

除了1~3中的基本标准之外,好算法的评判标准是高效率、低存储

四、时间复杂度

算法的时间复杂度就是算法运行所需的时间。现代计算机一秒能计算数十亿次,所以不能用秒来具体计算算法消耗的时间。由于相同配置的计算机进行一次基本运算的时间是一定的,可以用算法基本运算的执行次数来衡量算法的效率,因此我们将算法基本运算的执行次数作为时间复杂度的衡量标准。

4.1常见的算法时间复杂度分类

        有些算法,如排序、查找、插入算法等,可以分为最好最坏平均情况分别求算法渐近复杂度。但是考查一个算法时通常考查最坏的情况,而不是考查最好的情况,最坏情况对衡量算法的好坏具有实际意义

         常见的算法时间复杂度分类:

  1. 常数阶:常数阶算法的运行次数是一个常数,如5、20、100。常数阶算法的时间复杂度通常用O(1)表示。
  2. 多项式阶:很多算法的时间复杂度是多项式,通常用O(n)、O(n²)、O(n³)等表示。
  3. 指数阶:指数阶算法的运行效率极差,程序员往往需要避开这种算法。通常用O(2ⁿ)、O(n!)、O(nⁿ)等表示。
  4. 对数阶:对数阶算法的运算效率较高,通常用O(logn)、O(nlogn)等表示。

指数阶增量随着x的增加而急剧增加,而对数阶增长缓慢。它们之间的关系如下:

        O(1) < O(logn) < O(n) < O(nlogn) < O(n²) < O(n³) < O(2ⁿ) < O(n!) < O(nⁿ)

在设计算法时,需要注意算法复杂度增量的问题,尽量避免爆炸级增量。

五、空间复杂度

空间复杂度的本意是指算法在运行过程中占用了多少存储空间。

 算法占用的存储空间包括:

  1. 输入/输出数据
  2. 算法本身
  3. 额外需要的辅助空间

输入/输出数据占用的空间是必需的,算法本身占用的空间可以通过精简算法来缩减,但缩减的量是很小的,可以忽略不计。算法在运行时所使用的辅助变量占用的空间(即辅助空间)才是衡量算法空间复杂度的关键因素。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值