Jupyter Lab 密码登录、远程访问

本文详细介绍了如何安装JupyterLab,包括Miniconda和pip的方式,以及如何进行安全验证,设置密码并允许远程登录。步骤涵盖了从本地服务配置到不同网络环境下的连接技巧,如同一网段和跨网络连接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jupyter Lab 是一款给予 Web 的可交互式集成开发环境(IDE)。 相信很多人已经用过 Jupter Notebook 了,其最令人诟病的可能就是 Jupter Notebook 无法图形化的访问地址,在需要切换路径的时候很不方便。

那么是时候使用 Jupyter Lab 了。只需要在终端输入 jupyter-lab,就会开启本地服务,并打开浏览器显示你熟悉的 Notebook 界面。


那么问题来了, 如何从远程访问这个服务呢?

文章内容:

  • JupyterLab 安装
  • JupyterLab 安全验证
  • 远程登录 JupyterLab

1. Jupyter Lab 安装

安装 JupyterLab 非常简单,只需一行命令即可:

  • conda 安装 [Miniconda]
    conda install -c conda-forge jupyterlab
    
  • pip 安装
    pip install jupyterlab
    

2. JupyterLab 安全验证

JupyterLab 使用密码保证服务的安全,从而确保其他用户无法登录使用。默认情况下,会自动生成随机密码,如 : http://127.0.0.1:8888/lab?token=2cefb80900a38689d9d0d2c4927832fa4ae322b1e441c601,其中 token=密码

为方便远程登录,可手动设置密码,方法如下:

  • 生成配置文件
    jupyter server --generate-config
    

    该命令会在 ~/.jupyter 目录下生成配置文件 jupyter_server_config.py, 如果该配置文件已经存在,则会提示是否替换该文件。

  • 手动设置密码
    jupyter server password
    
    在终端输入密码后,会将该密码的哈希值写入配置文件。
    图1
    你现在就可以尝试打开 JupyterLab,你会发现你需要输入刚刚设定的密码才可以登录。

3. 远程登录 JupyterLab

JupyterLab 的服务器默认监听的 IP:PORTlocalhost:8888。我们可以修改这两个值,因为我们不希望我们开启的远程服务会干扰到其他用户开启的本地默认服务:

jupyter-lab --no-browser --port 5678

--no-browser : 不打开浏览器
--port : 监听端口
如果添加 --ip "IP地址" 则会指定IP

现在,你已经在开启了 JupyterLab 服务了,马上打开浏览器,输入 localhost:5678 试试看。

为了模拟远程登录的场景,假设现在 A 电脑已经在 IP=192.168.3.100Port=5678 上开启了服务。 你应该知道怎么开启了吧? 好吧,最后示范一次!

jupyter-lab --no-browser --ip "192.168.3.100" --port 5678

我们要在 电脑B 上登录 电脑AJupyterLab 服务,这里有两种情况:

  • BA 在同一网段,比如 192.168.3.200
  • B 可以通过网络连接到 A,但不是同一个网段

3.1 同一网段

这种情况非常简单,因为网段相同,显然 B可以直接访问 A的 IP。在 B 上打开浏览器,输入 192.168.3.100:5678,输入密码即可成功登录。

3.2 通过网络连接

虽然无法通过 192.168.3.100 直接访问,但我们可以做个正向代理(在B上执行命令),将本地端口绑定远程A的端口:

ssh -CNL localhost:5678:192.168.3.100:5678 usernameA@IPA
  • usernameA : 电脑 A 的用户名
  • IPA :电脑 A 的外网IP
  • 这句命令会将本地 localhost:5678 映射到远程电脑 5678
  • 使用 -f 参数可后台运行

现在,在电脑B 上打开浏览器,输入 localhost:5678 看效果吧。


在conda 虚拟环境中使用 JupyterLab:

$ conda activate cenv           # . ./cenv/bin/activate in case of virtualenv
(cenv)$ conda install ipykernel
(cenv)$ ipython kernel install --user --name=<any_name_for_kernel>
(cenv)$ conda deactivate
### 关于2024年KDD会议的相关论文 目前尚未有明确的信息表明2024年的KDD会议已公开其接受的论文列表。通常情况下,顶级学术会议如KDD会在官方网站上发布被接收论文的具体信息以及提供访问链接[^2]。对于最新的研究动态和具体论文内容,可以关注官方发布的Call for Papers通知及其后续更新。 如果希望了解更具体的领域进展或者提前获取可能的研究方向,可以通过查看最近几年内的相似主题文章来推测未来趋势。例如,在学术图表挖掘方面的一个最新贡献来自OAG-Bench这一由人工精心策划的数据集与评测标准集合体,它为评估各类算法提供了统一平台[^3]。 另外值得注意的是其他计算机视觉及相关领域的顶级会议上所展示的工作也可能对未来KDD上的讨论产生影响。这些资源包括但不限于CVPR、ICLR、NeurIPS等知名国际大会公布的成果档案网址链接[^4]。 为了及时掌握有关2024年度KDD会议的所有重要资讯,请定期浏览该活动官网并订阅任何可用的通知服务;同时也可以通过查阅预印本服务器arXiv寻找潜在投稿者分享的技术报告草稿版本作为补充参考资料之一。 ```python import requests from bs4 import BeautifulSoup def fetch_kdd_papers(year): url = f"https://www.kdd.org/kdd{year}/accepted-papers" response = requests.get(url) if response.status_code != 200: return "Papers not available yet or invalid year." soup = BeautifulSoup(response.text, 'html.parser') titles = [title.text.strip() for title in soup.find_all('h3')] return titles[:5] # Returning first five as an example. papers_2024 = fetch_kdd_papers(2024) if isinstance(papers_2024,str): print(papers_2024) else: for paper in papers_2024: print(f"- {paper}") ``` 上述脚本尝试抓取指定年份KDD会议主页下的部分录取论文标题样例,但由于实际网络环境变化等因素可能导致执行失败情况发生。因此建议仅将其视为理论框架而非绝对可靠工具使用。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值