- 博客(55)
- 资源 (2)
- 收藏
- 关注
原创 服务器磁盘高占用排查
本博客用来记录在服务器上发现 /home 存储空间异常占用后,如何排查每个用户的空间使用情况,以及如何快速找出当前目录(包含隐藏文件夹)下最大的前 10 个文件。
2025-02-07 18:50:17
994
原创 Python中 logging.basicConfig
logging.basicConfig 是 Python 中用来设置日志系统的一种最简便方法。通过它可以快速地指定日志级别、日志输出格式、输出目标(文件或控制台)等基本参数。
2025-02-07 17:02:49
241
原创 Python 字典(dict)
Python 中的字典(dict)是一种非常强大且常用的数据结构,它以键值对(key-value pairs)的形式存储数据。字典的使用非常灵活,适用于许多场景。以下是对 Python 字典的详细分析:
2025-02-07 16:19:16
639
原创 ESP8266+SG90+点灯科技+小爱同学实现关灯
本项目使用 ESP8266 模块与 SG90 舵机相结合,借助 Blinker(点灯科技)和 米家(小爱同学)实现对实体灯开关的远程及语音控制。其核心思路是:ESP8266 通过 Wi-Fi 连接到互联网,与 Blinker 及米家云端进行数据交换,小爱同学(或 Blinker App)发送“开灯/关灯”的命令后,ESP8266 收到指令并驱动舵机拨动实体开关。
2025-01-09 13:35:22
839
原创 网格去噪(Mesh-Denoising)
本项目基于《Non-Iterative, Feature-Preserving Mesh Smoothing》论文,实现了一种非迭代、特征保留的网格去噪算法。项目通过Python环境下的Jupyter Notebook演示了算法原理与流程,包括利用高斯函数作为空间权重和影响权重,对目标顶点在局部三角面片上的投影进行加权平均,从而平滑噪声同时保留边缘特征。在C++实现部分,借助OpenMesh库完成了OBJ文件的读取、处理与保存,通过高斯权重计算和顶点投影等步骤对整个网格进行平滑处理,并记录每个顶点的移动日志
2025-01-09 11:49:43
929
原创 实时面部情绪识别
本项目旨在实现实时面部情绪识别。其核心流程首先使用 OpenCV 内置的 Haar 级联分类器进行人脸检测,再通过多种卷积神经网络模型对提取的人脸进行情绪分类识别。项目提供了多种模型架构选择,包括基于灰度图(48×48)、RGB 图像(96×96、224×224)的自定义卷积网络,以及基于预训练的 EfficientNetV2 模型,并在七种情绪(如快乐、愤怒、悲伤、惊讶等)上进行了训练和微调。为弥补现有数据集中亚洲人脸数据较少的问题,项目团队还自行收集了包含亚洲人面部表情的数据集用于进一步优化模型。
2025-01-09 10:40:16
983
原创 实时面部情绪识别(一)
情绪识别是软件中使用的一种技术,它允许程序使用高级图像处理来“读取”人脸上的情绪。公司一直在尝试将复杂的算法与过去十年中出现的图像处理技术相结合,以更多地了解一个人的面部图像或视频告诉我们他/她的感受,不仅如此,还显示了一张脸可能具有混合情绪的可能性。本文给GitHub - otaha178/Emotion-recognition: Real time emotion recognition补充了环境配置和常见的问题
2024-10-24 22:36:54
1151
1
原创 RadioML2018.01a数据拆分
在调制信号识别的过程中,难免需要使用不同信噪比或不同调制类型的数据,但是完整的数据过于庞大,本文提供一种可选参数的数据集划分方法。支持单一类型或多类型数据的输出,输出的结果保存到npy文件这种,方便后续加载,可选参数如下:- --hdf5_path: 输入 HDF5 文件的路径(必填)。- --output_dir: 输出数据保存的根目录(必填)。- --modulations: 目标调制类型列表(可选)。如果未指定,则默认选择所有 24 种调制类型。- --snrs: 目标 SNR 列表(必填)
2024-10-18 17:03:51
1244
原创 在服务器上开Juypter Lab教程(远程访问)
介绍了如何在Linux服务器上配置远程访问的Jupyter Lab环境,包括从Anaconda的安装、Pytorch环境的创建、Jupyter Lab的配置到Node.js的安装步骤。它涵盖了相关命令的解释,例如如何赋予文件执行权限、创建和激活Conda虚拟环境以及配置Jupyter Lab的密码和远程访问。文件还包括一些常见问题的解决方法,如无法访问Jupyter Lab的登录界面、密码错误导致的登录失败以及环境未正确配置等。
2024-09-14 08:59:41
2080
2
原创 小样本学习系列(一):MAML代码解析
1、提供将Omniglot数据保存到npy的方法2、对MAML代码整合,可直接运行3、包含对源码的讲解 4、包含对常见方法的介绍5、提出多个疑问并进行解答6、提供具体代码,含数据集
2024-07-21 11:11:49
1058
5
原创 端到端自动驾驶系列(一):自动驾驶综述解析
自动驾驶社区见证了采用端到端算法框架的方法的快速增长,这些方法利用原始传感器输入生成车辆运动计划,而不是专注于检测和运动预测等单个任务。与模块化管道相比,端到端系统受益于感知和规划的联合特征优化。由于大规模数据集的可用性、闭环评估以及对自动驾驶算法在具有挑战性的场景中有效执行的需求不断增加,该领域蓬勃发展。
2024-07-13 11:16:44
2411
原创 调制信号识别系列 (一):基准模型
本文包含对CNN和CNN+LSTM基准模型的复现,模型架构参考两篇文章,在RadioML2016.10a SNR=6dB下准确率可达90%,并提供完整数据集及其代码
2024-07-07 12:48:46
899
3
原创 CVPR2024 轨迹预测系列(一)
CVPR2024 轨迹预测系列(一)介绍了Adapting to Length Shift: FlexiLength Network for Trajectory Prediction.CaDeT: a Causal Disentanglement Approach for Robust Trajectory Prediction in Autonomous Driving.
2024-06-29 18:57:41
1788
原创 车辆轨迹预测系列 (五):Argoverse API Forecasting Tutorial代码解析
车辆轨迹预测系列 (五):Argoverse API Forecasting Tutorial代码解析本文简单介绍Argoverse API中demo_usage/argoverse_forecasting_tutorial.ipynb所使用到的方法:argoverse.data_loading.argoverse_forecasting_loaderargoverse.visualization.visualize_sequencesargoverse.map_representation
2024-06-28 20:15:51
1226
原创 车辆轨迹预测系列 (四):VectorNet代码复现及踩坑记录
VectorNet代码复现及踩坑记录,由于官方没有提供具体的代码,本文中选择一个"民间版本"进行复现,在复现过程中尽量保证使用.ipynb方便理解和展示输出的结果,重点修复了原始版本的多处bug,并给出相关的步骤代码和解决方案,最后提供相关源码。
2024-06-26 23:27:52
1659
2
原创 车辆轨迹预测系列 (三):nuScenes数据集详细介绍-1
车辆轨迹预测系列 (三):nuScenes数据集详细介绍-1对nuScenes数据集的架构进行解释
2024-06-22 14:46:06
3283
原创 车辆轨迹预测系列 (二):常见数据集介绍
车辆轨迹预测系列 (二):常见数据集介绍-介绍九种数据集,并给出下载方式和下载地址,以及相应的论文资源
2024-06-21 21:48:01
3252
原创 一份简单的前端开发指南
这篇博客是一份简单的前端开发指南,覆盖了从HTML基础到Vue框架的相关内容·。它分为六大部分,介绍了构建现代网页所需的各种技术和方法。开始于HTML的核心概念,如表格、标签种类及元素分类。接着深入CSS,讲述样式的应用、布局设计和视觉效果的实现。JavaScript部分探讨了编程语言的基础,包括变量声明、数据类型、函数使用等核心概念。ES6章节引入了新的语法特性和编程模式,为代码提供了更高效、简洁的实现方式。Vue部分则是专注于这一流行的前端框架。
2024-03-02 20:45:17
845
原创 Pkt2flow-将pcap文件按照网络流量切割
将pcap文件按照网络流量切割,使用 4 元组(src_ip、dst_ip、src_port、dst_port) 将数据包分隔为 TCP 或 UDP 流。每个流都将保存到一个 pcap 中 以 4 元组命名的文件和流的第一个数据包的时间戳。
2024-01-03 18:38:26
729
原创 2023.6.19项目部署(一)前端项目部署
2023.6.19项目部署(一)前端项目部署,本文将介绍如何将前端Vue项目进行打包,并利用宝塔面板和Nginx完成对其前端项目的部署。
2023-06-20 10:14:41
1197
原创 Springboot+Vue服务器盲盒活动
本项目是基于Springboot+Vue2.x开发的虚拟机活动系统,前端UI设计使用了ElementUI,后端数据库采用MySQL、整合了MybatisPlus、JWT。该系统大体上分为登录模块、抽奖模块、奖券操作模块、实例操作模块。
2023-06-12 20:41:34
2423
1
原创 2023.5.12解决Ubuntu中ens33没有ip
解决Ubuntu中ens33没有ip的问题,具体分为Ubuntu高版本 sudo netplan applyUbuntu 16.04及更早版本 sudo vi /etc/systemd/resolved.conf
2023-05-24 09:21:22
7409
ESP8266+SG90+点灯科技+小爱同学实现关灯
2025-01-09
车辆轨迹预测系列 (五):Argoverse API Forecasting Tutorial代码解析
2024-06-28
车辆轨迹预测系列 (二):常见数据集介绍
2024-06-21
CIC-DDoS2019-Detection
2024-06-18
397759104564211resources_zh_CN_AndroidStudio_3.5_r1.jar
2022-02-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人