收敛准则(一)

我们知道,收敛数列必定有界,这是数列的有界性。也就是说,数列有界是数列收敛的必要条件,那么自然就会问:数列有界是不是数列收敛的充分条件呢。答案是否定的,也即有界数列不一定收敛。在这个系列,我们就研究一下关于有界数列与收敛的关系,主要回答以下两个问题:

e5ce88bda64e9d3bd69b598a8e1c781e.png

1.有界数列加上什么条件可保证收敛?

2.有界数列不加其它条件,可得到什么弱一些的结论?

b5dc1837596ec36e8e8a2343f61186af.png

Part1

先回答第一个问题,直接给答案:

8936e5bd27623def572438ce0b4d775a.png

单调有界数列必定收敛

我们证明这个结论:

5d4fcbd70b5c6832d4cea8e679f342d0.png

因此,我们得到进一步的结论:

5296e1f8a25047444f345b39dbdf620d.png

单调有界数列必定收敛,其极限是以通项构成的数集的确界

下面举四个例子。

  • 例1

b545f9a2ab0c44246189d53059ed664e.png

观察数列的通项,可以知道,知道了x1,就能知道x2,知道了x2,就能知道x3,依次下去。我们把具备这种形式的数列通项称为递推式。递推式在进行动态规划是最基础的方法,利用计算机能够解决许多问题,这些以后有机会再说。我们回到数列收敛上。

e38373a7b0add923a57ca8b25d5bb382.png

  • 例2

d3ee12fc23608e89752b16db86a13951.png

我们知道数列xn极限是0,说明它是一个无穷小量。我们知道,不一样的无穷小量趋近于0的速度是不一样的:

a73bf943c872763a9db1ec517f9726c0.png

进一步的,我们想知道数列xn是以哪种速度趋近于0的,因此,我们探讨:

50ed397c4c4f9afa212cef5e4d0acbcd.png

所谓的等价,在收敛角度来看,是指两个数列收敛的速度是一样的。这一点以后在函数极限会深入讲解。

  • 例3

731a3519e593b3807f0c6568f93c693d.png

上面三个例子都是具备递推式的数列,首先证明数列单调有界,再利用其极限唯一性去求解。

b77db3eff4df1f4fcd76517bc9dcc253.png

Part2

但现实中,更多情况是递推式不明确,且数列不一定是单调的。下面我们通过一个例子来初步感受有界不单调数列但收敛的求解思想。

  • 例4

斐波那契(Fibonacci),是意大利数学家,他提出了著名的斐波那契数列,也称兔子数列:

3996cf4d9906ff170d43ae5657a74f43.gif

假设有一对兔子,经过一个季度可以到成长期,再经过一个季度可以到成熟期,成熟期的兔子可以生出1对兔子,生下来的兔子也都是经过成长期到成熟期,然后又可以生出1对兔子。假设兔子不会死,每次都是只生1对兔子

我们首先模拟一下前七个季度处于小兔、成长期和成熟期的数量,很容易得到下面一张表格:

季度
小兔对数
成长期对数
成熟期对数
总对数
1
1
0
0
1
20
1
0
1
3
1
0
1
2
4
1
1
1
3
5
2
1
2
5
6
3
2
3
8
7
5
3
5
13

接下来,我们来找递推式:

9d8240dbae0ad9e511b587f4a04131b7.png

从递推式可以看出,兔子的总对数是无限增长的,也就是该数列是无穷大量。但我们更关心其增长率:

018587d2fb64ad4a04f6a45c54e54077.png

接下来讨论数列{bn},看看是否收敛。

4ac7312543b4d728ab2fc66a2f76601c.png

正好增长率为黄金分割点,因此斐波那契数列又称为黄金分割数列,它的增长率极限为0.618.

上面证明过程有两点需要注意,第一点是分界点的确定,其实是先假设bn收敛,那么可以得到:

261ba8757cc240f5462007a3894cca46.png

这样就能确定临界点。

第二点是讨论偶数项的时候,讨论到偶数项单调减少,但只确定了有下界:

257d5df931c9b3c45f62a9ffcdd3c281.png

但我们直接说有界,严格意义上,还要证明其有上界,但事实上很简单,因为b2n单调减少,所以只要知道b2,我们就证明了偶数项有界:

73c6d2f5bce8fe757acd078896af4403.png

### Ansys 收敛判定标准设置指南 #### 设置收敛准则的重要性 在Ansys仿真过程中,确保求解器能够稳定且高效地达到收敛状态至关重要。这不仅影响到仿真的准确性,也关系到计算资源的有效利用。 #### 定义全局收敛参数 为了设定合适的收敛条件,在进入具体操作前需先理解几个关键概念: - **残差(Residuals)**: 表示当前迭代步与上步之间误差大小的变化量。 - **相对变化率(Relative Change Rate)**: 当前值相对于初始值的比例变动幅度。 - **绝对公差(Absolute Tolerance)** 和 **相对公差(Relative Tolerance)**: 这些是用来衡量数值接近程度的标准阈值[^1]。 #### 实际配置方法 通过图形界面或命令流方式调整这些参数的具体步骤如下所示: ##### 图形用户界面 (GUI) 1. 打开Analysis Settings窗口; 2. 寻找Solution Controls选项卡下的Convergence Criteria部分; 3. 对于不同物理场(如结构力学、热传导等),分别指定相应的容限范围;例如最大位移允许偏差百分比、温度波动界限等等; 4. 如果遇到难以收剑的情况可以尝试降低默认精度要求或者增加松弛因子来改善稳定性。 ```python # Python脚本用于自动化修改ANSYS Workbench中的某些设置 import ansys.mapdl.core as pymapdl mapdl = pymapdl.launch_mapdl() # 启动Mapdl实例 mapdl.prep7() mapdl.et(1, 'SOLID186') mapdl.block(0, 10, 0, 5, 0, 3) mapdl.vsweep(1) mapdl.esize(1) mapdl amat('MAT', type_='ISO') mapdl.mpdata('EX', 1, value=2e5) mapdl.nsel('ALL') mapdl.d('all', 'UX', 0) mapdl.fk(1, 'FY', -1000) mapdl.solve() # 修改收敛控制参数的例子 mapdl.eqslv('SPARSE') # 使用稀疏矩阵求解器 mapdl.slashsolu('AUTO','ON') # 自动选择最佳算法 mapdl.convm('DISP', tol=1E-6) # 设定位移收敛容忍度为1E-6 ``` #### 调试技巧 当面对复杂模型无法正常完成迭代时,除了上述提到的方法外还可以考虑以下策略: - 减少网格尺寸细化程度以减少自由度数量从而简化线性方程组规模; - 尝试不同的时间积分方案比如隐式vs显式法; - 利用多级子域分解技术分阶段逐步逼近最终解答路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值