1.理解LP问题的对偶变量含义
2.熟悉LP规划模型的定性和定量灵敏度分析
3.原问题与对偶问题是看同一个问题的不同视角
4.强对偶性是KKT条件成立是充分必要条件
5.掌握对偶单纯形法的详细流程,并体会与单纯形法的差异
线性规划(LP)是最基础的运筹优化模型,我们已经对它有了初步的认识,并学会了第一种求解方法——单纯形法。今天,我们进一步分析它,考虑模型结果对输入参数或常量变动的灵敏度。我们要用到一个新的案例(混料模型):
钢铁行业里,为了生产出满足各种化学成分要求的合金产品,金属废料需要加入一些纯添加剂来最大程度利用原材料。这是一个典型的混料问题。但由于添加剂极为昂贵,因此需要详细规划。而瑞典一家钢铁厂计划生产1000千克的熔炉进料,所有钢材的主要原材料是铁,下表列举了4种废料中碳、镍、铬、钼微量元素的含量比、可用数量以及单位成本(以瑞典货币克朗计量)。同时,表中也列出了3种可用的高成本纯添加剂以及最终混料中各种元素允许的含量范围。
显然,该问题的具体模型为:
1
定性灵敏度分析
LP问题的灵敏度分析包括约束条件的系数和目标函数系数,前者又分为右端系数(RHS)和左端系数(LHS)。首先我们来考虑约束条件。
我们知道,约束条件可以分为松约束和紧约束。当放宽一个约束后,可行域增加了,对应的最优值只能不变或者更优,收紧一个约束后,最优值只能不变或更差。具体怎么评判系数变化对约束松紧的影响,我们要具体分析。我们利用上面的“瑞典钢铁厂”案例来加以说明。
比如,假设其他参数不变,下图展示了改变废料1供给量限制的右端系数对目标最优值的影响:
可以看到,随着右端系数的增加,碎片1的可行域范围变大,对应最小化目标函数,最优值先逐渐减少,但不是线性递减,在经过第二个红色的点(60.4,10003.023)后减少速率变慢,最后在第四个红点(83.3,9925.5185)后速率变为0.期间经过第三个红点(75,9953.6717),也即原来约束条件的右端系数。
我们在来看其他参数不变,改变铬最低限制对最优值的影响:
随着右端系数的增加,铬最低限制的可行域范围变小,对应最小化目标函数,最优值逐渐变大,但不是线性递增,在经过第二个红色的点(9,9916.944)后上升速率变快,最后在第三个红点(11.7,10016.108)后速率变得更大.最后在第四个红点(12,10030.472)速率变为无穷大(不可行)。
我们把类似这种“≤ ”的约束称为供给型约束,它的右端系数增加会放松约束,右端系数减少则收紧约束;把“≥” 的约束称为需求型约束,它的右端系数增加会收紧约束,右端系数减少则放松约束。
同理,左端系数变化也会对最优值有影响。假设其他参数不变