对偶线性规划

对偶线性规划 - 维基百科

单凭这么一段文字,很难想象到底发生了什么,只知道以一定的方式将原线性规划问题变为了另一个线性规划问题。

下表提供了对偶问题的具体构建方法,这应该是一个结论,但我们不知所以然。

当然,照着做确实能把一个线性规划问题转换为其对偶问题,但 why?

简单推导,参考《拉格朗日乘子法》

一般形式的线性规划问题: min ⁡ x ∈ R n c ⊺ x s u b j u c t   t o   A x = b G x ≤ h \begin{aligned} \min\limits_{\bm{x} \in \mathbb{R}^n} & \bm{c}^\intercal \bm{x} \\ subjuct~to~ & A\bm{x} = \bm{b} \\ & G\bm{x} \le \bm{h} \end{aligned} xRnminsubjuct to cxAx=bGxh 其中 b ∈ R m , h ∈ R r \bm{b} \in \mathbb{R}^m, \bm{h} \in \mathbb{R}^r bRm,hRr。现在,对其条件进行一些操作:
(1) 对于等式条件 A x = b A\bm{x} = \bm{b} Ax=b,两边同乘以 u ∈ R m \bm{u} \in \mathbb{R}^m uRm,有 u ⊺ A x = u ⊺ b (1) \bm{u}^\intercal A\bm{x} = \bm{u}^\intercal\bm{b} \tag{1} uAx=ub(1)
(2) 对于不等式条件 G x ≤ h G\bm{x} \le \bm{h} Gxh,两边同乘以 v ≤ 0 ∈ R r \bm{v} \le 0 \in \mathbb{R}^r v0Rr,有 v ⊺ G x ≥ v ⊺ h (2) \bm{v}^\intercal G\bm{x} \ge \bm{v}^\intercal\bm{h} \tag{2} vGxvh(2) 执行 ( 1 ) + ( 2 ) (1) + (2) (1)+(2),有 u ⊺ A x + v ⊺ G x ≥ b ⊺ u + h ⊺ v ( A ⊺ u + G ⊺ v ) ⊺ x ≥ b ⊺ u + h ⊺ v \begin{aligned} \bm{u}^\intercal A\bm{x} + \bm{v}^\intercal G\bm{x} &\ge \bm{b}^\intercal \bm{u} + \bm{h}^\intercal \bm{v} \\ (A^\intercal \bm{u} + G^\intercal \bm{v})^\intercal \bm{x} &\ge \bm{b}^\intercal \bm{u} + \bm{h}^\intercal \bm{v} \end{aligned} uAx+vGx(Au+Gv)xbu+hvbu+hv c = A ⊺ u + G ⊺ v \bm{c} = A^\intercal \bm{u} + G^\intercal \bm{v} c=Au+Gv,则 c ⊺ x ≥ b ⊺ u + h ⊺ v \bm{c}^\intercal \bm{x} \ge \bm{b}^\intercal \bm{u} + \bm{h}^\intercal \bm{v} cxbu+hv ( b ⊺ u + h ⊺ v ) (\bm{b}^\intercal \bm{u} + \bm{h}^\intercal \bm{v}) (bu+hv) c ⊺ x \bm{c}^\intercal \bm{x} cx 的下界。

我们就可以获得原问题的对偶问题: max ⁡ u ∈ R m , v ∈ R r b ⊺ u + h ⊺ v s u b j u c t   t o   A ⊺ u + G ⊺ v = c v ≤ 0 \begin{aligned} \max\limits_{\bm{u} \in \mathbb{R}^m, \bm{v} \in \mathbb{R}^r} & \bm{b}^\intercal \bm{u} +\bm{h}^\intercal \bm{v} \\ subjuct~to~ & A^\intercal \bm{u} + G^\intercal \bm{v} = \bm{c} \\ & \bm{v} \le 0 \end{aligned} uRm,vRrmaxsubjuct to bu+hvAu+Gv=cv0 这只是对标准形式的推导,稍微变化就可以对照上表中的各种情况。
【本质上是拉格朗日对偶】

例子

下面以推导方式和对表方式将这个表中的问题甲转换为问题乙:

推导

∀ y 1 ∈ R \forall y_1 \in \mathbb{R} y1R,有 ( 5 x 1 + 6 x 2 ) y 1 = 7 y 1 (5x_1 + 6x_2)y_1 = 7y_1 (5x1+6x2)y1=7y1 ∀ y 2 , y 3 < 0 \forall y_2, y_3 < 0 y2,y3<0,有 y 2 x 1 + y 3 x 2 ≤ 0 y_2x_1 + y_3x_2 \le 0 y2x1+y3x20,则 ( 5 x 1 + 6 x 2 ) y 1 + ( y 2 x 1 + y 3 x 2 ) ≤ 7 y 1 ( 5 y 1 + y 2 ) x 1 + ( 6 y 1 + y 3 ) x 2 ≤ 7 y 1 \begin{aligned} (5x_1 + 6x_2)y_1 + (y_2x_1 + y_3x_2) \le 7y_1 \\ (5y_1 + y_2)x_1 + (6y_1 + y_3)x_2 \le 7y_1 \end{aligned} (5x1+6x2)y1+(y2x1+y3x2)7y1(5y1+y2)x1+(6y1+y3)x27y1 c = ( 5 y 1 + y 2 , 6 y 1 + y 3 ) = ( 3 , 4 ) \bm{c} = (5y_1 + y_2, 6y_1 + y_3) = (3, 4) c=(5y1+y2,6y1+y3)=(3,4),那么 ( 5 y 1 + y 2 ) x 1 + ( 6 y 1 + y 3 ) x 2 = 3 x 1 + 4 x 2 ≤ 7 y 1 \begin{aligned} (5y_1 + y_2)x_1 + (6y_1 + y_3)x_2 = 3x_1 + 4x_2 \le 7y_1 \end{aligned} (5y1+y2)x1+(6y1+y3)x2=3x1+4x27y1 7 y 1 7y_1 7y1 ( 3 x 1 + 4 x 2 ) (3x_1 + 4x_2) (3x1+4x2) 的一个上限。且由于 y 2 , y 3 < 0 y_2, y_3 < 0 y2,y3<0,故而 5 y 1 > 3 , 6 y 1 > 4 5y_1 > 3, 6y_1 > 4 5y1>3,6y1>4,就得到了表右边对偶问题。

对照

c = ( 3 , 4 ) \bm{c} = (3, 4) c=(3,4) A = [ 5 6 ] A = \begin{bmatrix} 5 & 6 \end{bmatrix} A=[56] b = ( 7 ) \bm{b} = (7) b=(7),那么按照构建表,对偶问题应该是 max ⁡ y ∈ R m b ⊺ y s u b j u c t   t o   A ⊺ y = > < c \begin{aligned} \max\limits_{\bm{y} \in \mathbb{R}^m} & \bm{b}^\intercal \bm{y} \\ subjuct~to~ & A^\intercal \bm{y} \xlongequal[>]{<} \bm{c} \end{aligned} yRmmaxsubjuct to byAy< >c 代入,即 max ⁡ y ∈ R m 7 y 1 s u b j u c t   t o   5 y 1 ≥ 3 6 y 1 ≥ 4 y 1 ∈ R \begin{aligned} \max\limits_{\bm{y} \in \mathbb{R}^m} & 7y_1 \\ subjuct~to~ & 5y_1 \ge 3 \\ & 6y_1 \ge 4 \\ & y_1 \in \mathbb{R} \end{aligned} yRmmaxsubjuct to 7y15y136y14y1R 这可能经过练习熟练后,才适合这么做,否则一头雾水,也容易出错。

最优传输的对偶问题

d M ( r , c ) = min ⁡ P ∈ U ( r , c ) ∑ i , j P i j M i j U ( r , c ) = { P ∈ R > 0 n × m ∣ P 1 m = r , P ⊺ 1 n = c } \begin{aligned} d_M(\bm{r}, \bm{c}) &= \min_{ P \in U(\bm{r}, \bm{c}) } \sum_{i,j} P_{ij} M_{ij} \\ U(\bm{r}, \bm{c}) &= \{ P\in \mathbb{R}_{>0}^{n \times m} \mid P\bm{1}_m = \bm{r}, P^\intercal\bm{1}_n = \bm{c}\} \end{aligned} dM(r,c)U(r,c)=PU(r,c)mini,jPijMij={PR>0n×mP1m=r,P1n=c} 写得更正式一点就是 min ⁡ P ∑ i , j P i j M i j s u b j u c t   t o   P 1 m = r P ⊺ 1 n = c P > 0 \begin{aligned} \min_{P} &\sum_{i,j} P_{ij} M_{ij} \\ subjuct~to~ &P\bm{1}_m = \bm{r} \\ &P^\intercal\bm{1}_n = \bm{c} \\ &P > 0 \end{aligned} Pminsubjuct to i,jPijMijP1m=rP1n=cP>0 仿照上面的推导步骤,设 α ∈ R n , β ∈ R m \bm{\alpha} \in \mathbb{R}^n, \bm{\beta} \in \mathbb{R}^m αRn,βRm,有 α ⊺ P 1 m = α ⊺ r β ⊺ P ⊺ 1 n = β ⊺ c \begin{aligned} \bm{\alpha}^\intercal P\bm{1}_m = \bm{\alpha}^\intercal \bm{r} \\ \bm{\beta}^\intercal P^\intercal\bm{1}_n = \bm{\beta}^\intercal \bm{c} \end{aligned} αP1m=αrβP1n=βc 两行相加,得 α ⊺ P 1 m + β ⊺ P ⊺ 1 n = α ⊺ r + β ⊺ c \begin{aligned} \bm{\alpha}^\intercal P\bm{1}_m + \bm{\beta}^\intercal P^\intercal\bm{1}_n = \bm{\alpha}^\intercal \bm{r} + \bm{\beta}^\intercal \bm{c} \end{aligned} αP1m+βP1n=αr+βc 因为最优传输解问题是最小化问题,我们就找一个比之更小的式子,然后最大化,那么令 α ⊺ P 1 m + β ⊺ P ⊺ 1 n = α ⊺ r + β ⊺ c ≤ ⟨ P , M ⟩ α ⊺ P 1 m + β ⊺ P ⊺ 1 n ≤ ⟨ P , M ⟩ \begin{aligned} \bm{\alpha}^\intercal P\bm{1}_m + \bm{\beta}^\intercal P^\intercal\bm{1}_n = \bm{\alpha}^\intercal \bm{r} + \bm{\beta}^\intercal \bm{c} \le \langle P, M \rangle \\ \bm{\alpha}^\intercal P\bm{1}_m + \bm{\beta}^\intercal P^\intercal\bm{1}_n \le \langle P, M \rangle \end{aligned} αP1m+βP1n=αr+βcP,MαP1m+βP1nP,M ∑ i , j P i j ( α i + β j ) ≤ ∑ i , j P i j M i j \sum_{i,j} P_{ij} (\alpha_{i} + \beta_{j}) \le \sum_{i,j} P_{ij} M_{ij} i,jPij(αi+βj)i,jPijMij 如果最大化 ∑ i , j P i j ( α i + β j ) = α ⊺ P 1 m + β ⊺ P ⊺ 1 n = α ⊺ r + β ⊺ c \sum_{i,j} P_{ij} (\alpha_{i} + \beta_{j}) = \bm{\alpha}^\intercal P\bm{1}_m + \bm{\beta}^\intercal P^\intercal\bm{1}_n = \bm{\alpha}^\intercal \bm{r} + \bm{\beta}^\intercal \bm{c} i,jPij(αi+βj)=αP1m+βP1n=αr+βc 就能获得原问题的最优解。由于 P > 0 P > 0 P>0 是变量,要想使 ∑ i , j P i j ( α i + β j ) ≤ ∑ i , j P i j M i j \sum_{i,j} P_{ij} (\alpha_{i} + \beta_{j}) \le \sum_{i,j} P_{ij} M_{ij} i,jPij(αi+βj)i,jPijMij 始终成立,就必须 α i + β j ≤ M i j \alpha_{i} + \beta_{j} \le M_{ij} αi+βjMij,于是,对偶问题: max ⁡ α ∈ R m , β ∈ R n α ⊺ r + β ⊺ c s u b j u c t   t o   α i + β j ≤ M i j \begin{aligned} \max_{\bm{\alpha} \in \mathbb{R}^m, \bm{\beta} \in \mathbb{R}^n} &\bm{\alpha}^\intercal \bm{r} + \bm{\beta}^\intercal \bm{c} \\ subjuct~to~ &\alpha_{i} + \beta_{j} \le M_{ij} \end{aligned} αRm,βRnmaxsubjuct to αr+βcαi+βjMij

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值