lightning.pytorch.callbacks内置的Callbacks介绍

PyTorch Lightning 提供了一些 内置回调 (Callback),可以在训练过程中自动执行 检查点保存、学习率调度、早停 等功能。通过使用 Trainer(callbacks=[...]) 来传入这些回调。

PyTorch Lightning 的 Callback 是一种强大的工具,允许用户在训练过程中插入自定义逻辑,而无需修改核心的训练代码。Callback 的设计基于钩子(hooks),在训练流程的特定点执行自定义代码。

1. 内置回调列表

PyTorch Lightning 内置了以下 Callbacks(可以直接使用,无需自定义):

回调名称 功能
ModelCheckpoint 自动保存最佳模型(基于验证指标)
EarlyStopping 自动停止训练(当验证指标不再改善时)
LearningRateMonitor 记录学习率变化(支持 TensorBoard & WandB
RichProgressBar 使用 rich 库美化训练进度条
TQDMProgressBar 默认的 tqdm 进度条
DeviceStatsMonitor 监控 GPU/CPU 使用情况
BatchSizeFinder 自动寻找最优 batch size
GradientAccumulationScheduler 自动调整梯度累积步数
ModelSummary 打印模型结构和参数量
StochasticWeightAveraging (SWA) 使用 SWA 进行权重平均,提高泛化能力

2. 详细介绍 & 代码示例

(1)ModelCheckpoint - 自动保存最佳模型

用于 自动保存模型检查点(ckpt),可以: ✅ 保存最佳模型(基于某个指标,如 val_loss)。
✅ 定期保存(如每 n 个 epoch 保存一次)。
✅ 限制最大检查点数量(避免磁盘占用过大)。

📜 示例:

from lightning.pytorch.callbacks import ModelCheckpoint

# 仅保存最优模型 (基于 val_loss)
check
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值