图论-图和简单图

本文介绍了图论中的基本概念,包括平凡图、空图、完全偶图和补图。讨论了图的同构、等价类、商集以及顶点的度。还探讨了奇点、偶点、正则图、握手定理以及图的子图类型,如生成子图和导出子图。此外,文章涉及了图的连通性、最短路算法和图的代数表示,如邻接矩阵和关联矩阵。
摘要由CSDN通过智能技术生成

图和简单图:

一个图就是,由一个表示具体事物的点的集合,和表示事物之间联系的一些线的集合所构成。

平凡图:只有一个点而无边的图。

空图:边集为空的图。

假设u和v是e的端点,称u与e相关联。

图的同构:

u_1\leftrightarrow u_2,v_1\leftrightarrow v_2u_1v_1u_2v_2的重数相同。

等价类:按照同构关系可划分。

商集:所有等价类为元素构成的集合。

完全偶图:具有二分类(X,Y)的简单偶图,其中X的每个顶点与Y的每个顶点相连。

补图:

对于一个简单图G=(V,E),令集合E_1=\{uv|u\neq v,u,v\in V\},则图H=(V,E_1 \setminus E)称为G的补图。

ps:这里E和E1的边加起来,就是完全图的边数。

ps:因为是自补图,自己和自己的补图同构,边数当然是一样的啦。

取模运算,商偏向于负无穷方向。去余运算,商偏向于0方向。

a ≡ b (mod p),表明a和b对p取模,它们余数相等。

顶点的度,度序列:

奇点:奇数度的顶点;偶点:偶数度的顶点。

k正则图:每个点的度数都为k。如:完全图和完全偶图K_{n,n}均是正则图。

握手定理:

ps:因为总的度数为偶数。偶点无论怎么加都为偶数,奇点要加够偶数个,才为偶数。

ps:k为奇数,则图的所有点都为奇点,奇点的个数必为偶数,也就是阶数为偶数。

ps:当△(G)<n-1时, 所有的度可能的情况都在括号里了。当△(G)=n-1时,每个顶点的度数范围在最小度到最大度之间,这个长度的范

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值