图和简单图:
一个图就是,由一个表示具体事物的点的集合,和表示事物之间联系的一些线的集合所构成。
平凡图:只有一个点而无边的图。
空图:边集为空的图。
假设u和v是e的端点,称u与e相关联。
图的同构:
且和的重数相同。
等价类:按照同构关系可划分。
商集:所有等价类为元素构成的集合。
完全偶图:具有二分类(X,Y)的简单偶图,其中X的每个顶点与Y的每个顶点相连。
补图:
对于一个简单图G=(V,E),令集合,则图称为G的补图。
ps:这里E和E1的边加起来,就是完全图的边数。
ps:因为是自补图,自己和自己的补图同构,边数当然是一样的啦。
取模运算,商偏向于负无穷方向。去余运算,商偏向于0方向。
a ≡ b (mod p),表明a和b对p取模,它们余数相等。
顶点的度,度序列:
奇点:奇数度的顶点;偶点:偶数度的顶点。
k正则图:每个点的度数都为k。如:完全图和完全偶图均是正则图。
握手定理:
ps:因为总的度数为偶数。偶点无论怎么加都为偶数,奇点要加够偶数个,才为偶数。
ps:k为奇数,则图的所有点都为奇点,奇点的个数必为偶数,也就是阶数为偶数。
ps:当△(G)<n-1时, 所有的度可能的情况都在括号里了。当△(G)=n-1时,每个顶点的度数范围在最小度到最大度之间,这个长度的范