1.1 图的基本描述 几种特殊图
- 有限图
- 复合图
- 简单图(无环无重边)
- 完全图 Kn 边数最多的简单图 同构下 唯一 边数Cn2=n(n-1)/2
- 补图 H 完全图-原图 把原图不相邻的点全部连起来,擦掉原图就是补图)
- 自补图 G与H同构 判定:顶点数为4的倍数或除4余1
- 证判定:同构=边数相同, G、H边数和为完全图边数=n(n-1)/2 G、H边数为n(n-1)/4,所以n或n-1为4倍数
- 自补图 G与H同构 判定:顶点数为4的倍数或除4余1
- 二部图(偶图)
- 每条边端点一个在x一个在y(用两种颜色对顶点着色,使任意边两点颜色不同,则为二部图)
- 完全二部图 Km,n 边数mn
- X中每个顶点都与y相连 (颜色不同点一定有边(X和Y每个点都相邻),颜色相同一定无边)
- 完全二部图 Km,n 边数mn
- 二部图判定:当且仅当不含奇圈
- 证:一个图是偶图(能二部划分)当且仅当每个连通分支都是偶图,因此只讨论连通二部图中证明 必要性:偶图-只有偶圈(不含奇圈) 设G是具有二分类(X, Y)的偶图,并且C = v0v1…vkv0是G的任意一个圈。 假定v0∈X。这样,v2i∈X,且v2i +1∈Y 又v0∈X,所以vk∈Y,由此得C是偶圈(对圈交替着色) 充分性:不含奇圈-偶图 设G是不包含奇圈的连通图。则按顶点间距的奇偶必然可以分成两类,且不相邻 X = { x | d (u, x) 是偶数,x∈V(G) }, Y = { y | d (u, y) 是奇数,y∈V(G) } ***二部图着色方案:定点间距的奇偶决定着什么色 再证明( X, Y )是G的一个二分类(X\Y中任意两点不连,相连必然一个在X一个在Y)
- (最短路证XY二分类)设P是一条最短(u , v)路,而Q是一条最短的(u, w)路。 设u1是P和Q的最后一个交点。 由于P,Q是最短路,所以P,Q中u到u1段长度相同,因此奇偶性相同。 又因为P,Q的长度均是偶数,所以P,Q中u1v段和u1w段奇偶性相同。 如果v与w相邻,则可得到奇圈,矛盾! 类似地,Y中任意两个顶点也不相邻。 所以(X, Y )是G的一个二分类。
- 证:一个图是偶图(能二部划分)当且仅当每个连通分支都是偶图,因此只讨论连通二部图中证明 必要性:偶图-只有偶圈(不含奇圈) 设G是具有二分类(X, Y)的偶图,并且C = v0v1…vkv0是G的任意一个圈。 假定v0∈X。这样,v2i∈X,且v2i +1∈Y 又v0∈X,所以vk∈Y,由此得C是偶圈(对圈交替着色) 充分性:不含奇圈-偶图 设G是不包含奇圈的连通图。则按顶点间距的奇偶必然可以分成两类,且不相邻 X = { x | d (u, x) 是偶数,x∈V(G) }, Y = { y | d (u, y) 是奇数,y∈V(G) } ***二部图着色方案:定点间距的奇偶决定着什么色 再证明( X, Y )是G的一个二分类(X\Y中任意两点不连,相连必然一个在X一个在Y)
- 连通二部图划分唯一
- 因为二部图着色方案为到起点间距的奇偶,因此唯一
- 每条边端点一个在x一个在y(用两种颜色对顶点着色,使任意边两点颜色不同,则为二部图)
- 边 m(G)
- 重数:连相同顶点的边数
- 同构:顶点数、边数、度数、重数对应相同
- 相互同构的图构成等价类,可视为一个对象
- 1.2 子图与图运算
- 子图:由G的顶点集、边集一部分组成,且边的重数小于G 包括空图和自身
- 真子图 不包括自身
- 生成子图(支撑子图) 满足V(H) =V(G)的子图H 顶点集完全相同,边和重数不同
- m条边的简单标号图生成子图为2^m个(标号就不考虑同构)
- 导出子图
- (点)导出子图
- V'是V 的非空子集,以V'为点集,两端点均在V'中的边全体为边集组成,称为G由V'导出的子图,记为G[V']
- G -V′ = G[V \V′] 左:g中删点操作右:除去v'的导出子图
- V'是V 的非空子集,以V'为点集,两端点均在V'中的边全体为边集组成,称为G由V'导出的子图,记为G[V']
- 边导出子图
- E'是E的非空子集,以E'为边集,E'中边的端点全体为点集组成,称为G 由E' 导出的子图,记为G[E' ]
- G[E\E' ] ≠ G–E'左:除去边e‘的边导出子图,没有e'的顶点右:g中删边操作,删边不去点
- E'是E的非空子集,以E'为边集,E'中边的端点全体为点集组成,称为G 由E' 导出的子图,记为G[E' ]
- (点)导出子图
- 图运算:设G1,G2是G的子图
- 不相交:无公共顶点边不重:无公共边
- 并图G1∪G2 :点点并,边边并,还是G的子图。边集中重复的边不要算成重边,变成一个。 如果G1和G2是不相交的,就记其并图为G1+G2。
- 联图G1∨G2: 不相交的G1G2的并图G1+G2中,再把G1的每个顶点和G2的每个顶点连接起来所得,称为G1和G2的联图
- 联图一定是完全二部图
- Km与Kn的联图 = Km+nKm∨Kn = Km+n
- 联图G1∨G2: 不相交的G1G2的并图G1+G2中,再把G1的每个顶点和G2的每个顶点连接起来所得,称为G1和G2的联图
- 交图G1∩G2 :公共顶点+公共边,二者至少要有一个公共顶点。
- 差图G1-G2 :G1中去掉G2中的边,删边不删点!!
- 对称差G1△G2 = (G1∪G2) -(G1∩G2) = (G1-G2)∪(G2-G1)
-
- 积图G1xG2:1.将G2在G1每个顶点处画一次———同一层(以G1顶点为准) 2.处于同一层上的顶点,按G1形式画边
- 点集:V=V1×V2, 即V1与V2的笛卡尔积。例如,V1={1,2};V2={3,4,5},则V={(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}.
- 边集:若顶点u=(u1,u2),v=(v1,v2)满足如下两个条件之一,则连接uv;否则,不连接u,v.
- 条件:(u1=v1且u2 adj v2) 或 (u2=v2且 u1 adj v1).
- 超立方体 1立方体Q1=K2 n立方体Qn=Q1xQn-1
- 超立方体Qn是具有2^n个顶点,nx2^(n-1)条边的n正则二部图。
- 二进制编码实现:1.用长度为n的01编码作顶点 2.若两顶点只有一位数字不同就相连
- 超立方体 1立方体Q1=K2 n立方体Qn=Q1xQn-1
- 合成图G1[G2]:1.将G2在G1每个顶点处画一次 2.若G1中两个顶点有边,就把2个顶点对应的2个G2部分画完全二部图
- 联合G1·G2:把G1的任意一个顶点和G2的任意一个顶点等同起来得到的
- 子图:由G的顶点集、边集一部分组成,且边的重数小于G 包括空图和自身
- 1.3 路和连通性
- 途径(通道、通路)
- w为(v1,v2)途径w中边数为它的长度(经过多少次边,可重复)
- 简单图-途径唯一确定
- 闭途径(环游)
- 连通 uv间有途径,一个能连到自身也是连通
- 连通图 任意两点间有途径
- 连通分支 G的每一个极大连通部分 连通分支数w(G) 连通图w(G)=1
- n阶连通图至少有n-1条边(树)如果边数大于n-1,则至少有一个圈(树的性质)
- 单独考虑一度顶点u,就像是挂在G-u外面(去掉1度顶点,不会破坏剩下子图的连通性和结构)
- 构造一个恰好为n-1条边的生成简单图,若再加一条边,那必然连简单图中不相邻顶点,产生一个圈
- 单独考虑一度顶点u,就像是挂在G-u外面(去掉1度顶点,不会破坏剩下子图的连通性和结构)
- 非连通图的补图一定连通(且补图直径<=2)连通图的补图不一定连通
- 证:G中任选两点,分别讨论邻接和不邻接情况不邻接,则补图中邻接;邻接则属于同一分支,在另一分支中取一点w,则在补图中w和uv分别邻接,wuv是一条途径,故补图中uv连通
- (期末考)若δ ≥ 2,则G 中必然含有圈
- 非简单图一定有圈,所以只用连通的简单图证明<最长路证明> 设W=v1v2…vk-1vk是G 中的一条最长路。 由于δ ≥ 2,所以vk必然有相异于vk-1的相邻顶点。又因为W是G中最长路,所以这样的点必然是v1, v2,…,vk-2中之一。 设该点为vm,则vmvm+1….vkvm为G中的一个圈。
- 简单图G(n,m),若G的直径为2且Δ= n-2,则m≥2n-4。
- 设d(v)=Δ=n-2,且设v的邻接点为v1, v2,…,vn-2, u是剩下的一个顶点由于d(G)=2且u不能和v相邻,所以u至少和v1, v2…,vn-2中的一个顶点邻接,否则有d(G)>2如果u不连,非连通图直径定义为∞不妨假设u和v1, v2,…,vk相邻为了保证u到各点距离不超过2,vk+1,….vn-2这些顶点的每一个必须和前面v1, v2,…, vk中某点相邻,这样图中至少又有n-2条边,所以至少有n-2+n-2-k+k=2n-4条边
- 简单图G 若任意两不相邻顶点u与v满足d(u)+d(v)≥n-1,则G是连通图且d(G)≤2
- 证明对G中任意两点x与y,一定存在一条长度至多为2的连接x与y的路若xy相邻,显然成立若xy不相邻,假设前k个v与x相邻,后l个v与y相邻(反证法)存在w既不连x也不连y(G不连通)此时d(x)=k,d(y)=l,k+l<=n-2与条件相悖,所以不存在w两个都不连,所以一定存在w两个都连,因此G为连通图且直径最大为2
- 连通图 任意两点间有途径
- 迹:边不重复,点可重
- 闭迹(回路) 边数=顶点数-1 类似电流不会经过相同路,但会过相同节点
- 路:点不重复,边不重
- 圈 K圈-长度为K的圈 顶点数=边数 1圈为自环,2圈为重边
- 非简单图一定有圈(有环有重边)
- 无圈图一定是简单图
- 距离d(u,v) uv间长度最短的路,若无路,则认为无穷大
- 图G的直径d(G) 所有顶点对距离的最大值(最短路最大值)
- 圈 K圈-长度为K的圈 顶点数=边数 1圈为自环,2圈为重边
- uv存在途径→uv存在路
- 过u有闭迹(回路)→过u有圈但过u有闭途径,不一定有圈(圈要求点不重复,闭途径可能是走过去再沿着回来,长度为2的闭途径)
- 圈一定是回路(圈是最简单的回路)
- 是回路但不是圈——一定是边不重的圈的并
- 途径(通道、通路)
- 1.4 最短路算法(会考但不难)
- 赋权图H的权W(H)=所有边权和
- 赋权图最短路d(u,v)=连接uv边权和最小的路
-
- 1.记 a1=a, t(a1) =0, A1= {a1}, T1= Ø ;2.为每个已经被标号的顶点找一个最近(权重min)的邻居3.离起点最近的邻居作为下一个标号点4.重复对每个被标号点再操作一次,直到终点被标号(标号值就是起点到对应点的最短路长度)这个方法反着做也能找到最短路,全局最优一定局部最优
- 1.5 图的代数表示(常考几种矩阵基本性质)
- 邻接矩阵
- 相连为1,其他为0
- 性质1:同一图不同标定方式的邻接矩阵,相似(左/右乘初等矩阵)
- 性质2:该行/列对应点的度=行/列和
- 性质3:G连通 当且仅当 没有一种标定法使它 的邻接矩阵有约化的形式
- 如果非连通,那一定存在两点间不连可以化成这个形式
- 邻接矩阵A所有特征值之和=A的迹=对角线之和
- 简单图对角元全为0
- A所有特征值平方和=A^2对角线之和=Vi度数和=2*m两倍边数
- 因为A^2对角线为vi的度数
- 因为谱第二行是重数(代表对应特征值出现了几次)所以mi* λi^2求和就是所有特征值之和= A^2对角线之和=2m
- λ取值范围可由边数、点数来刻画
- 用柯西不等式证cos,x1=(1…1)x2=(λ2… λn)n-1个又简单图对角线为0,λ1=其余和又λi^2和为2m,λ1^2=2m-其余平方和
- 相连为1,其他为0
- 推广的邻接矩阵
- 相连的重数
- 性质1:A^n元素aij(n)等于由vi到vj的长度为n的途径的数目(自身出去回来算一条长度为2的途径---A^2对角线是Vi的度)
- (归纳假设)AikAkj^(n)表示所有Vi经Vk到Vj长度为n+1途径数又k取全部值,所以可证表示Vi到Vj所有长度为n+1途径数目
- 求边数问题,都转成求度数之和(A^2对角线是Vi的度)
- 性质2:A^3 的元素 aii(3) 是含 vi 的三角形的数目的两倍
- 性质3:若G连通,则求两点间距离,就是依次求A^n找到最小的n使Aij不再为0,距离就是n
- 性质1:A^n元素aij(n)等于由vi到vj的长度为n的途径的数目(自身出去回来算一条长度为2的途径---A^2对角线是Vi的度)
- 相连的重数
- 关联矩阵(点边n*m矩阵)
- (无环)行点vi与边列ej关联时bij=1,否则bij=0
- 若不考虑环,bij代表点边关联次数 bij=0,1,2(自环)
- 性质:列和为2 行和为对应顶点度数
- (无环)行点vi与边列ej关联时bij=1,否则bij=0
- 图G的特征多项式
- 邻接矩阵A(G)的特征多项式
- 特征多项式的特征值及其重数—邻接谱(谱)Spec(G)第一行为G不同特征值;第二行为对应特征值重数
- 完全图的邻接谱一定要记!!!
- 完全图 Spec=(-1,n-1;n-1,1)
- 同谱图:两非同构的拥有相同邻接谱的图成为同谱图—特征多项式也相同
- 特征多项式的特征值及其重数—邻接谱(谱)Spec(G)第一行为G不同特征值;第二行为对应特征值重数
- 邻接矩阵A(G)的特征多项式
- 图的邻接代数(了解)
- 邻接代数(n维空间)-Λ(G)、+、*构成
- G为n阶简单连通图,则d(G)+1 ≤ dimΛ(G) ≤ n
- G为n阶简单连通图,则d(G)+1 ≤ s ≤ n(s为Λ(G)不同特征值个数)
- 邻接代数(n维空间)-Λ(G)、+、*构成
- 图空间(了解)
- G全部生成子图2^m、对称差、数乘构成m维(边数)
- 邻接矩阵
- 1.6 极图(要点、重点)
- L部图
- 所有的Vi 非空,Vi 内的点均不邻接,称G是一个 l 部图G的顶点集能划分成L部,且内部顶点不邻接
- n阶无环图必是n部图(全部分开)
- 若l1<l2≤n,则任意的l1部图也是l2部图(向上,二部图是严格的要求)
- 所有的Vi 非空,Vi 内的点均不邻接,称G是一个 l 部图G的顶点集能划分成L部,且内部顶点不邻接
- 完全L部图 K(n1,n2..)
- 分成l个部分。不同部分的任意两顶点都相连(任意两部分间构造完全图)
- 联图运算构造完全L部图
- (常考!)完全L部图点数: ∑ ni完全L部图边数: ∑ ninj(i<j)
- 完全二部图 m=n1n2(仅当n1=n2取等)m<=n^2/4
- (常考!)完全L部图点数: ∑ ni完全L部图边数: ∑ ninj(i<j)
- 联图运算构造完全L部图
- 完全L几乎等部图 T(l,n)
- 任意两部分顶点数最多相差1r个部分点数为k+1,L-r个部分点数为kn/l为平均值,向上取整为k+1,向下取整为k
- 完全L等部图(刚好均分顶点)
- (完全L几乎等部图是边数最多的划分)n阶l部图G有最多边数的充要条件是 G ≌ T(l, n)
- 任意两部分顶点数最多相差1r个部分点数为k+1,L-r个部分点数为kn/l为平均值,向上取整为k+1,向下取整为k
- 分成l个部分。不同部分的任意两顶点都相连(任意两部分间构造完全图)
- Turan定理(会考,很难)
- G是n阶简单图,并且不包含Kl+1(l+1完全图) 则边数 m(G) ≤ m(Tl, n) 仅当G ≌ Tl, n时,m(G) = m(Tl, n)
- 例:G是不含K3(三角形)的八阶图,问G的最多边数无K3→二部划分→4、4(完全L几乎等部划分法)→4*4=16例:G是不含K4的九阶图,G最多边数无K4→三部划分→3、3、3→3*3+3*3+3*3=27(任意两部构造完全图,ninj求和)
- T(l,n)是不含KI+1的边数最多n阶简单图→找不到L+1个两两相邻顶点
- G是n阶简单图,并且不包含Kl+1(l+1完全图) 则边数 m(G) ≤ m(Tl, n) 仅当G ≌ Tl, n时,m(G) = m(Tl, n)
- 图优、图弱
- 两个n阶图,度序列一一对应,且都d(Va)<d(Vb),则B图优于A图
- 图优、图弱一定是成对的,任意两个n阶图之间还可能不存在优、弱关系,因为不双射无法比较
- 图优一定边数多,但边数多不一定图优
- 工兵排雷问题
- 工兵排雷问题:一个由n个人组成的小组在一个平原地区执行一项排雷任务。对于其中任意两个人,若其距离不超过g米,则可用无线电保持联系;若发生触雷意外,地雷的杀伤半径为h米。问:在任意的两个人之间均能保持联系的条件下,若发生意外,平均伤亡人数最低的可能值为多少?
-
- 求在任意的两个人之间的距离不超过g米的条件下距离大于h米的人数对最多能达到多少对
- 两点连线当且仅当他们距离大于h米(连线表示不会被炸伤)
- 两点连线当且仅当他们距离大于h米(连线表示不会被炸伤)
- 求在任意的两个人之间的距离不超过g米的条件下距离大于h米的人数对最多能达到多少对
- L部图
- 顶点 |v|顶点数=n(G)
- 度数:一个点连的边数,环算2
- δ 最小度△ 最大度
- 奇点(偶点)度数为奇数
- 奇点一定成对出现
- K正则图:每个顶点度均为k
- 1正则图:无数个基本单元为竖线2正则图:无数个基本单元为圈完全图kn为n-1正则图完全二部图kn,n为n正则图
- 正则图阶数(顶点数)和度数不同时为奇数 度数和=nk=2m(握手定理) n、k中必有一个偶数!不可能同时为奇
- ‼️握手定理:度数之和=2倍边数
- 2m\n=平均度 所以小于最大度,大于最小度
- 度序列:每个点度组成的序列(可重复)
- 非负整数组(d1, d2,…., dn)是度序列 充分必要条件 ∑di 为偶数。必要性:握手定理充分性:若∑di为偶数,那奇点个数一定为偶数 若为偶点,对应点作di\2个自环;若为奇点,两两配对后连一条边,剩余作自环
- 图序列:存在简单图,以非负整数组(d1, d2,…, dn)为度序列,那么这个数组可图
- 判定:降次直到最简,若最简序列可图则原序列可图 1.度数和为偶数 2.度数序列排成弱降 3.删去最大度di对应点,后面di个点的度数都-1 4.再排成弱降!!再删去最大度点,后面di个点度数-1 5.直到最简,可以画出图,那么就可图
- 频序列:同一度数出现的频率
- 证:简单图一定有度数相同顶点
- 1.若无孤立点 Δ(G)≤n-1
- 则1<=d<=n-1
- 如果各顶点度数都不相同,那应存在n个数,但1~n-1只有n-1个数,所以一定存在度数相同顶点
- 2.若有孤立点
- 则1<=d<=n-2 同理
- 补图频序列不变
- 证:点v在G及其补图的度数之和为n-1(完全图) 因此在G中有a个度数为b的点,那么在补图中也有a个度数为n-1-b的点 频序列是相同度数出现次数,因此都为a
- 补图频序列不变
- 度数:一个点连的边数,环算2
设d(v)=Δ=n-2,且设v的邻接点为v1, v2,…,vn-2, u是剩下的一个顶点由于d(G)=2且u不能和v相邻,所以u至少和v1, v2…,vn-2中的一个顶点邻接,否则有d(G)>2如果u不连,非连通图直径定义为∞不妨假设u和v1, v2,…,vk相邻为了保证u到各点距离不超过2,vk+1,….vn-2这些顶点的每一个必须和前面v1, v2,…, vk中某点相邻,这样图中至少又有n-2条边,所以至少有n-2+n-2-k+k=2n-4条边
任意两部分顶点数最多相差1r个部分点数为k+1,L-r个部分点数为kn/l为平均值,向上取整为k+1,向下取整为k
邻接矩阵A(G)的特征多项式
2m\n=平均度 所以小于最大度,大于最小度
单独考虑一度顶点u,就像是挂在G-u外面(去掉1度顶点,不会破坏剩下子图的连通性和结构)
邻接代数(n维空间)-Λ(G)、+、*构成
分成l个部分。不同部分的任意两顶点都相连(任意两部分间构造完全图)
补图 H 完全图-原图 把原图不相邻的点全部连起来,擦掉原图就是补图)
证明对G中任意两点x与y,一定存在一条长度至多为2的连接x与y的路若xy相邻,显然成立若xy不相邻,假设前k个v与x相邻,后l个v与y相邻(反证法)存在w既不连x也不连y(G不连通)此时d(x)=k,d(y)=l,k+l<=n-2与条件相悖,所以不存在w两个都不连,所以一定存在w两个都连,因此G为连通图且直径最大为2
用柯西不等式证cos,x1=(1…1)x2=(λ2… λn)n-1个又简单图对角线为0,λ1=其余和又λi^2和为2m,λ1^2=2m-其余平方和
联图运算构造完全L部图
奇点一定成对出现
构造一个恰好为n-1条边的生成简单图,若再加一条边,那必然连简单图中不相邻顶点,产生一个圈
如果非连通,那一定存在两点间不连可以化成这个形式
因为谱第二行是重数(代表对应特征值出现了几次)所以mi* λi^2求和就是所有特征值之和= A^2对角线之和=2m
‼️握手定理:度数之和=2倍边数
是回路但不是圈——一定是边不重的圈的并
(归纳假设)AikAkj^(n)表示所有Vi经Vk到Vj长度为n+1途径数又k取全部值,所以可证表示Vi到Vj所有长度为n+1途径数目