生产质量是制造业的核心,任何异常都可能导致成本增加和生产效率下降。传统的异常管理方法依赖于人工经验和纸质报告,这不仅耗时耗力,而且难以实现知识的积累和复用。随着人工智能技术的发展,我们可以通过AGI(Artificial General Intelligence)应用程序来提升生产质量异常分析的管理效率和准确性。以下是结合笔者部分工作实践,围绕生产过程数据,制定的一个技术思路和顶层方案(数据和资料已经过脱敏),介绍如何利用AGI应用程序来解决生产质量异常分析问题。
图一:锂电行业生产数据应用的难点和痛点
图二:锂电行业现场质量异常分析与诊断现状
1. 异常管理流程的智能化
传统的异常管理流程存在效率低下和知识管理不足的问题。AGI应用程序可以通过以下几个步骤来提升流程的智能化水平:
1.1 预诊断自动化
AGI应用程序可以实时监控生产线的数据,通过机器学习算法对异常进行快速预诊断,减少对人工经验的依赖。
1.2 知识库构建
利用AGI的学习能力,构建一个包含历史异常案例和解决方案的知识库,实现知识的积累