快速傅立叶变换魔法阵

Table of Contents

 

1.所需材料

A.复数

B.连续时间正弦信号、三角函数公式、欧拉公式

C.连续时间复指数信号(极坐标)、欧拉公式变换后的复指数信号(直角坐标)

D.连续时间正弦函数的复指数表示(欧拉公式分解)

E.离散时间复指数信号的重复性(采样定理、混叠)

F.离散时间信号分解为单位脉冲(卷积和)

G.离散时间线性时不变系统的系统响应(h[n])

H.连续时间周期函数的傅立叶分解

Ex.A 以N阶线性常系数差分方程表示的离散时间系统

Ex.B. 有限脉冲响应离散时间系统(FIR,N=0)

Ex.C. 无限脉冲响应离散时间系统(IIR,N>0)

2. 傅立叶变化魔法

A.连续时间周期函数傅立叶级数(三角函数、直角坐标系、FS)

B.连续时间周期函数傅立叶级数(复指数、极坐标系、FS)

C.离散时间周期函数的傅立叶级数(复指数、极坐标系、DFT)

D.连续时间信号的傅立叶变换(FT)

E.离散时间信号的傅立叶变换(DTFT)

3.绘制快速傅立叶变换魔法阵

A.奇偶分解

B.化简运算


1.所需材料

A.复数

z=\Re + \Im =a+ib=r(\cos \theta+i\sin \theta)=re^{i\theta },r=\sqrt{a^{2}+b^{2}}, \sin \theta = \frac{b}{r}

z^{*}=a-ib

z+z^{*} = 2a \quad or \quad z+z^{*} = 2 \Re

z-z^{*} = 2bi \quad or \quad z-z^{*} = 2 \Im

B.连续时间正弦信号、三角函数公式、欧拉公式

f(t)=A\sin(\omega t+\theta), \quad T=\frac{2\pi }{\omega } = \frac{1}{f}

A\sin(\alpha + \beta) = A\sin\alpha\cos\beta + A\sin\beta\cos\alpha

\cos t=\frac{e^{it}+e^{-it}}{2},\sin t=\frac{e^{it}-e^{-it}}{2i}

C.连续时间复指数信号(极坐标)、欧拉公式变换后的复指数信号(直角坐标)

f(t)=Ae^{st}, \quad s=\sigma +j\omega

f(t)=Ae^{(\sigma +j\omega )t}=Ae^{\sigma t}\cos (\omega t)+jAe^{\sigma t}\sin(\omega t)

D.连续时间正弦函数的复指数表示(欧拉公式分解)

A\cos(\omega t+\phi )=A\Re\{e^{j(\omega t+\phi)}}\}

A\sin(\omega t+\phi )=A\Im\{e^{j(\omega t+\phi)}}\}

sin(\omega t) = \Im \{e^{j\omega t}\}

E.离散时间复指数信号的重复性(采样定理、混叠)

对于连续信号\omega越大,信号频率越大,对于离散信号由于N是固定的,因此相对不同\omega值的这N个值呈现周期重复性

x[n]=e^{j(\omega +2\pi)n}=e^{j2\pi n}e^{j\omega n}=e^{j\omega n}

F.离散时间信号分解为单位脉冲(卷积和)

\delta [n]=\left\{\begin{matrix} 1\quad(n=0)\\0\quad(n\neq 0) \end{matrix}\right.

x[n]=\sum_{k=0}^{N}x(k)\delta (n-k)

G.离散时间线性时不变系统的系统响应(h[n])

\delta [n]\overset{System}{\rightarrow}h[n]

x[n]\overset{System}{\rightarrow}y[n]

y[n]=\sum_{k=0}^{N}x[k]h[n-k]=x[n] * h[n]\quad convolution

H.连续时间周期函数的傅立叶分解

f(t)=A_0+\sum_{n=1}^{\infty}A_n\sin(n\omega t + \varphi _n)

周期函数f(t)可以使用一组成谐波关系(n\omega)的三角函数的和表示

(n\omega)表示简单波的频率,\varphi _n表示简单波的相位

Ex.A 以N阶线性常系数差分方程表示的离散时间系统

\sum_{k=0}^{N}a_{k}y[n-k]=\sum_{k=0}^{M}b_{k}x[n-k]

y[n]=\frac{1}{a_0}\{\sum_{k=0}^{M}b_k x[n-k]-\sum_{k=1}^{N}a_n y[n-k]\}

Ex.B. 有限脉冲响应离散时间系统(FIR,N=0)

炼化1.Ex.A

y[n]=\sum_{k=0}^{M}(\frac{b_k}{a_0}) x[n-k]

h[n]=\left\{\begin{matrix} \frac{b_n}{a_0},\quad \leqslant n \leqslant M\\\\0, \quad else \end{matrix}\right.

Ex.C. 无限脉冲响应离散时间系统(IIR,N>0)

y[n]=\frac{1}{a_0}\{\sum_{k=0}^{M}b_k x[n-k]-\sum_{k=1}^{N}a_n y[n-k]\}

2. 傅立叶变化魔法

A.连续时间周期函数傅立叶级数(三角函数、直角坐标系、FS)

以1.H连续时间周期函数的傅立叶级数、1.B三角函数公式做催化剂

f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}[a_n\cos(n\omega t)+b_n\sin(n\omega t)]

\frac{a_{0}}{2} = A_{0},a_{n} =A_{n}\sin\varphi _{n},b_{n} =A_{n}\cos\varphi _{n}

左右同时积分得到系数

a_{0}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(t)dt,a_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(t)\cos (n\omega t)dt,b_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(t)\sin (n\omega t)dt

相位信息被转移到a_n,b_n

B.连续时间周期函数傅立叶级数(复指数、极坐标系、FS)

以1.A共轭复数、1.B欧拉公式作为催化剂

f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(\frac{a_n-jb_n}{2}e^{jn\omega t}+\frac{a_n+jb_n}{2}e^{-jn\omega t})

=\frac{a_0}{2}+\sum_{n=1}^{\infty}[F(n\omega )e^{jn\omega t}+F(-n\omega )e^{-jn\omega t}], \quad F(n\omega )=\frac{a_n-jb_n}{2}

=\sum_{n=-\infty}^{\infty}F(n\omega )e^{jn\omega t},\quad F(0)=\frac{a_0}{2}, \sum_{n=1}^{\infty}F(n\omega )e^{jn\omega t}=\sum_{n=1}^{\infty}F(-n\omega )e^{-jn\omega t}

系数

F(n\omega )=\frac{1}{T }\int_{0 }^{T }f(t)e^{-jn\omega t}dt

F(n\omega)为极坐标(复数)表示形式,复数的长度就是谐波的频率\left | F(n\omega) \right |,复数的角度就是谐波的相位\nless F(n\omega )

C.离散时间周期函数的傅立叶级数(复指数、极坐标系、DFT)

在2.B的基础上,以1.E离散时间周期函数的重复性,化简累加上下限

x[n]=\sum_{k=0}^{N}X[k\omega ]e^{jk\omega n},\quad \omega=\frac{2\pi}{N}

X[k\omega]=\frac{1}{N}\sum_{n=0}^{N}x[n]e^{-jk\omega n}

D.连续时间信号的傅立叶变换(FT)

定义以下函数

F(\omega)=\int f(t)e^{-j\omega t}dt

并将下列材料放入2.B的魔法阵中,得到连续时间信号的傅立叶变换

\omega = \frac{2\pi}{T},\quad T \to \infty, \quad \omega \to 0,\quad \lim_{x \to 0}\sum x=\int dx

f(t)=\frac{1}{2\pi}\int F(\omega)e^{j\omega t}d\omega

E.离散时间信号的傅立叶变换(DTFT)

变换方式同2.D

x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X[\omega]e^{j\omega n}d\omega

X[\omega]=\sum x[n]e^{-j\omega n}

3.绘制快速傅立叶变换魔法阵

A.奇偶分解

对于计算机而言,只能使用2.C中的魔法,因此将任意信号都当作周期为N的信号

X[k\omega]=\frac{1}{N}\sum_{n=0}^{N}x[n]e^{-jk\omega n},\quad W_{N}^{k}=\frac{1}{N}e^{-jk\omega n}

X[k]=\sum_{even(n)}x[n]W_{N}^{nk}+\sum_{odd(n)}x[n]W_{N}^{nk}

B.化简运算

2r=even(n),\quad 2r+1=odd(n), \quad r=0,1,...,\frac{N}{2}-1

\sin(\alpha+n\pi)=sin\alpha, \quad e^{jn\pi}=1, \quad n=2k

\sin(\alpha+n\pi)=-sin\alpha, \quad e^{jn\pi}=-1, \quad n=2k+1

W_{N}^{2}=W_{\frac{N}{2}}

X[k]=\sum_{r=0}^{\frac{N}{2}-1}x[2r]W_{\frac{N}{2}}^{rk}+W_{N}^{k}\sum_{r=0}^{\frac{N}{2}-1}x[2r+1]W_{\frac{N}{2}}^{rk}

=G[k]+W_{N}^{k}H[k]

X[\frac{N}{2}+k]=G[k]-W_{N}^{k}H[k],\quad k=0,1,...,\frac{N}{2}-1

对原函数进行奇偶分解后,所有偶数点产生G[k],所有奇数点产生H[k]

观察等式形式,将N点傅立叶变换经过奇偶分解变为N/2点傅立叶变换

C.快速傅立叶变换魔法阵(蝴蝶变换)

 

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可私 6信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可 6私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可私 6信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值